Navigation

Machine Learning: Advances (ML-II)


Machine Learning: Advances

Dozent/in

Details

Zeit/Ort n.V.:

Anmeldung mit Themenanfrage per E-Mail vor Beginn des Seminars; Die Themen werden nach dem Prinzip "Wer zuerst kommt, mahlt zuerst" verteilt.

  • Zeit/Ort n.V.

Studienfächer / Studienrichtungen

  • WF MT-MA ab Sem. 1
  • WF MT-MA-BDV ab Sem. 1
  • WF MT-MA-IDP ab Sem. 1
  • WPF CE-MA-SEM ab Sem. 1
  • WPF INF-MA ab Sem. 3
  • WF ICT-MA ab Sem. 1

Prerequisites / Organizational information

Dieser Kurs richtet sich an Anfänger, die mit maschinellem Lernen nicht vertraut sind, oder an Studierende, die eine schnelle Auffrischung suchen.

Anmeldung via e-mail an tobias.feigl@fau.de

Inhalt

Dieses Seminar führt in das Themengebiet des tiefen Lernens ein. Tiefes Lernen ist eine der gefragtesten Fähigkeiten in der künstlichen Intelligenz. Verfahren des tiefen Lernens haben beispielswiese alle bisherigen Benchmarks für die Klassifizierung von Bildern, Text und Sprache weit übertroffen. Tiefes Lernen ermöglicht und verbessert einige der interessantesten Anwendungen der Welt, wie autonome Fahrzeuge, Genomforschung, humanoide Robotik, Echtzeitübersetzung und es besiegt die besten menschlichen Go-Spieler der Welt.

Ziel des Seminars ist eine umfassende Einführung in das tiefe Lernen. Basierend auf maschinellem Lernen wird daher erklärt, wie tiefes Lernen funktioniert, wann und warum es wichtig ist und die wesentlichen Verfahren beleuchtet.

Zu den Verfahren gehören: (1) Architektur und Hyperparameter; (2) mehrschichtiges Perzeptron; (3) Mischungen neuronaler Netze; (4) tiefes Lernen für Sequenzen (Hidden Markov-Modelle, wiederkehrende neuronale Netze, bidirektionales/Langzeit-Kurzzeitgedächtnis, Gated Recurrent Unit, Temporal Convolutional Network); (5) tiefes Lernen für Bilder (Faltungs-Neuronale Netze); (6) tiefes/verstärkendes Lernen; (7) Markov-Prozesse (Gaußsche Prozesse und Bayes'sche Optimierung, grafische Modelle und Bayes'sche Netze, Kalman- und Partikelfilter); (8) Online-Lernen und Spieltheorie; (9) unüberwachtes Repräsentationslernen und generative Methoden (allgemeine gegnerische Netzwerke, Variational Autoencoder); (10) Datenerweiterung und Transferlernen.¹

Das Seminar gibt einen Einblick in die Welt des tiefen Lernens und befähigt den Studierenden eine wissenschaftliche Präsentation und Ausarbeitung anzufertigen, um individuell erworbenes Wissen einem Fachpublikum vermitteln zu können.

¹ Die Themen sind an den aktuellen Forschungsstand angepasst und wechseln sich jährlich ab.

Empfohlene Literatur

- G. Goodfellow und Y. Bengio und A. C. Courville: Deep Learning, mitp-Verlag, 2015
- R. S. Sutton und A. G. Barto: Reinforcement Learning: An Introduction, MIT Press, 1998
- F. V. Jensen: An Introduction To Bayesian Networks, Springer, 1996
- R. Rojas: Theorie der neuronalen Netze - eine systematische Einführung, Springer, 1993
- J. Schmidhuber: Deep learning in neural networks: An overview, J. Intl. Neural Network Society (INNS), 2015
- D. Silver et al.: Mastering the game of Go with deep neural networks and tree search, J. Nature, 2016
- F. Chollet: Deep Learning with Python, Manning Publications, 2017
- A. Müller und S. Guido: Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly UK Ltd., 2016
- T. J. Hastie und R. Tibshirani und J. H. Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, 2009

Zusätzliche Informationen

www: https://www.studon.fau.de/crs3063931.html