Navigation

Julian Brandner, M. Sc.

Department Informatik (INF)
Lehrstuhl für Informatik 2 (Programmiersysteme)

Raum: Raum 05.156
Martensstr. 3
91058 Erlangen

Sprechzeiten

n.V. per E-Mail

  • OpenMP für rekonfigurierbare heterogene Architekturen

    (Drittmittelfinanzierte Gruppenförderung – Teilprojekt)

    Titel des Gesamtprojektes: OpenMP für rekonfigurierbare heterogene Architekturen
    Laufzeit: 01.11.2017 - 31.10.2020
    Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
    URL: https://www2.cs.fau.de/research/ORKA/
    High-Performance Computing (HPC) ist ein wichtiger Bestandteil für die europäische Innovationskapazität und wird auch als ein Baustein bei der Digitalisierung der europäischen Industrie gesehen. Rekonfigurierbare Technologien wie Field Programmable Gate  Array (FPGA) Module gewinnen hier wegen ihrer Energieeffizienz, Performance und ihrer Flexibilität immer größere Bedeutung.
    Es wird außerdem zunehmend auf HPC-Systeme mit heterogenen Architekturen gesetzt, auch auf solche mit FPGA-Beschleunigern. Die große Flexibilität dieser FPGAs ermöglicht es, dass eine große Klasse von HPC-Applikationen mit FPGAs realisiert werden kann. Allerdings ist deren Programmierung bisher vorwiegend Spezialisten vorbehalten und sehr zeitaufwendig, wodurch deren Verwendung in Bereichen des wissenschaftlichen Höchstleistungsrechnens derzeit noch selten ist.
    Im HPC-Umfeld gibt es verschiedenste Programmiermodelle für heterogene Rechnersysteme mit einigen Typen von Beschleunigern. Gängige Programmiermodelle sind zum Beispiel OpenCL (opencl.org), OpenACC (openacc.org) und OpenMP (OpenMP.org). Eine produktive Verwendbarkeit dieser Standards für FPGAs ist heute jedoch noch nicht gegeben.

    Ziele des ORKA Projektes sind:

    1. Nutzung des OpenMP-4.0-Standards als Programmiermodell, um ohne Spezialkenntnisse heterogene Rechnerplattformen mit FPGAs als rekonfigurierbare Architekturen durch portable Implementierungen eine breitere Community im HPC-Umfeld zu erschließen.
    2. Entwurf und Implementierung eines Source-to-Source-Frameworks, welches C/C++-Code mit OpenMP-4.0-Direktiven in ein ausführbares Programm transformiert, das die Host-CPUs und FPGAs nutzt.
    3. Nutzung und Erweiterung existierender Lösungen von Teilproblemen für die optimale Abbildung von Algorithmen auf heterogene Systeme und FPGA-Hardware.
    4. Erforschung neuer (ggf. heuristischer) Methoden zur Optimierung von Programmen für inhärent parallele Architekturen.

    Im Jahr 2018 wurden folgende wesentlichen Beiträge geleistet:

    • Entwicklung eines source-to-source Übersetzerprototypen für die Umschreibung von OpenMP-C-Quellcode (vgl. Ziel 2).
    • Entwicklung eines HLS-Übersetzerprototypen, der in der Lage ist, C-Code in Hardware zu übersetzen. Dieser Prototyp bildet die Basis für die Ziele 3 und 4.
    • Entwicklung mehrerer experimenteller FPGA-Infrastrukturen für die Ausführung von Beschleunigerkernen (nötig für die Ziele 1 und 2).

    Im Jahr 2019 wurden folgende wesentlichen Beiträge geleistet:

    • Veröffentlichung zweier Papiere: "OpenMP on FPGAs - A Survey" und "OpenMP to FPGA Offloading Prototype using OpenCL SDK".
    • Erweiterung des source-to-source Übersetzerprototypen um OpenMP-Target-Outlining (incl. Smoke-Tests).
    • Fertigstellung des technischen Durchstichs für den ORKA-HPC-Prototypen (OpenMP-zu-FPGA-Übersetzer).
    • Benchmark-Suite für die quantitative Leistungsanalyse von ORKA-HPC.
    • Erweiterung des source-to-source Übersetzerprototypen um das Genom für die genetische Optimierung der High-Level-Synthese durch Einstellen von HLS-Pragmas.
    • Prototypische Erweiterung des TaPaSCo-Composers um ein (optionales) automatisches Einfügen von Hardware-Synchronisationsprimitiven in TaPaSCo-Systeme.

Alphabetisch sortiert im UnivIS