Annual Report of the Chair of Computer Science 2
(Programming Systems)

1 Staff

Dipl.-Ing. (FH) Helmut Allendorf (IT-support), Michael Baer, M. Sc., Dipl.-Inf. Thorsten Bla}, Tobias
Feigl, M. Sc., Hon.-Prof. Dr.-Ing. Bernd Hindel, Florian Jung, M. Sc., Marius Kamp, M. Sc., Hon.-Prof.
Dr.-Ing. Detlef Kips, Patrick Kreutzer, M. Sc., Florian Mayer, M. Sc., Dipl.-Inf. Daniela Novac, Dr.-
Ing. Norbert Oster, Akad. ORat, Prof. Dr. Michael Philippsen (Ordinarius), Prof. em. Dr. Hans Jiirgen
Schneider (Emeritus), Manfred Uebler (IT-support), Margit Zenk (Secretary)

Guests and external teaching staff: Dr.-Ing. Josef Adersberger, Veronika Dashuber, M. Sc., Dr.-Ing. Martin
Jung (external), Dipl.-Math. Jakob Krainz, Florian Lautenschlager, M. Sc., Dr.-Ing. Christopher Mutsch-
ler, Dr.-Ing. Klaudia Dussa-Zieger (external)

2 Overview

Since 2002 Prof. Michael Philippsen is heading the Chair of Computer Science 2 which was founded in
1972. The group’s main focus is on Programming Systems for heterogeneous Multicores.

Up to 2014/2015, we mainly took a system-level perspective and worked on the interface to both the
parallel hardware and the OS, on runtime system issues, and on how to best express parallelism in program
code. We strived to best harvest the potential of parallelism that is slumbering within applications and to
find the most efficient ways to map it to the parallelism provided by the hardware. As such systems-
oriented topics continue to be relevant, some of our projects continue to address them.

Nowadays the Programming Systems Group mainly finds answers for professional software engineers
who develop industry-sized parallel programs for multicores, for distributed networks of multicores, for
parallel cloud computing, and for networks of embedded systems.

3 Research projects

AnaCoRe — Analysis of Code Repositories: Software developers often modify their projects in a similar
or repetitive way. The reasons for these changes include the adoption of a changed interface to a library,
the correction of mistakes in functionally similar components, or the parallelization of sequential parts
of a program. If developers have to perform the necessary changes on their own, the modifications can
easily introduce errors, for example due to a missed change location. Therefore, an automatic technique
is desireable that identifies similar changes and uses this knowledge to support developers with further
modifications.

SYFEX is a new approach to symbolic code execution that computes the semantic similarity of two code
fragments. In 2017 and 2018 we optimized the implementation of SYFEX. We also began collecting a
data set of semantically similar methods from open source repositories. In order to make it feasible to
search for semantically similar code in bigger code projects, we developed a new technique based in
genetic programming, to hierarchically combine base comparators. We further improved the implemen-
tation of this approach in 2017 and 2018. Additionally, we focused on evaluating the approach with pairs



of methods from software repositories and from programming exercises.

AuDeRace — Automatic Detection of Race-Conditions: Recent software contains more and more paral-
lelism. This introduces several new bug patterns, like deadlocks and concurrent memory accesses, that
are harder or even impossible to be detected reliably using conventional test methods. Whether the faulty
behavior arises depends on the concrete scheduling of the threads which is indeterministic and varies
between individual executions depending on the underlaying system. Due to this unpredictable behavior
such bugs do not necessarily manifest in an arbitrary test run or may never arise in the testing environment
at all.

In 2018 the focus moved to a deterministic execution of test cases. A concept to reproduce results during
the execution was developed: In addition to the test case, a schedule specifies the dynamic behaviour of
the threads. Instrumenting the code at previously marked positions and other relevant byte code instructi-
ons allows a separate control thread to enforce the schedule. When modifying the source code, the marked
positions in the code need to be updated as well to keep them consistent with the test cases. A merging
technique similar to the ones used in version control systems shall be used to automatically update the
positions.

This project is a contribution of the Chair of Computer Science 2 (Programming Systems) to the IZ ESI
(Embedded Systems Initiative, http://www.esi.fau.de/ ) dar.

AutoCompTest — Automatic Testing of Compilers: Compilers for programming languages are very com-
plex applications and their correctness is crucial: If a compiler is erroneous (i.e., if its behavior deviates
from that defined by the language specification), it may generate wrong code or crash with an error messa-
ge. Often, such errors are hard to detect or circumvent. The lack of an appropriate test program generator
and the high costs associated with the development of such a tool often prevent the automatic testing of
compilers in practice.

In 2018, we started the development of such a tool. As input, it requires a specification of a programming
language’s syntactic and semantic rules by means of an abstract attribute grammar. Such a grammar al-
lows for a short notation of the rules on a high level of abstraction. Our newly devised algorithm then
generates test programs that conform to all of the specified rules. It uses several novel technical ideas to
reduce its expected runtime. This way, it can generate large sets of test programs in acceptable time, even
when executed on a standard desktop computer. A first evaluation of our approach did not only show that
it is efficient and effective, but also that it is versatile. Our approach detected several bugs in the C com-
pilers gcc and clang (and achieved a bug detection rate which is comparable to that of a state-of-the-art
C program generator from the literature) as well as multiple bugs in different SMT solvers. Some of the
bugs that we detected were previously unknown to the respective developers.

DfD — Design for Diagnosability: Many software systems behave obtrusively during the test phase or
even in normal operation. The diagnosis and the therapy of such runtime anomalies is often time con-
suming and complex, up to being impossible. ,,Design for Diagnosability* is a tool chain that consists
of modeling languages, components, and tools targeted towards increasing the diagnosability of software
systems.

We continued to make further contributions to the research project in 2018: We have published a paper
at PROFES 2018 that describes techniques and insights on how runtime data in a large software project
can be offered to all project participants at the development stage to improve their collaboration. We ha-
ve maintained the Chronix Open Source project and stabilized it further (updating versions, fixing bugs,
etc.).

GIFzuMINTS — Computer Science Basics as a basis for future-oriented MINT studies: Basic courses of
computer science taught during the first terms of the university studies are crucial for a successful degree.
Unfortunately they have also proven as a problematic obstacle that often lead to a premature termination
of the trial. In order to counteract the situation, we further extended the support of prospective students



during the transition phase from school to university and during the first terms of their studies.

In 2018 we analyzed the impact of all the different measures we developed throughout the project. We
quantified the outcome of increasing the number of tutorial courses and deepening the support of students
by applying qualified tutors. Additionally, we also assessed the impact of attending the revision course
on the results of the homework submissions and the final examination.

Holoware — Cooperative Exploration and Analysis of Software in a Virtual/Augmented Reality Appliance:
Understanding software has a large share in the programming efforts of a software systems, up to 30% in
development projects and up to 80% in maintenance projects. Therefore, an efficient and effective way for
comprehending software is neccessary in a modern software engineering workplace. Three-dimensional
software visualization already boosts comprehension and efficiency, so utilization of latest virtual reality
techniques seems natural.

Since the project started in September 2018, the following significant contributions have already been
made. First we developed of a functional VR visualization prototype for demonstration and research
purposes. We defined a mapping between dynamic run time data and static structure as a base for later
analysis and visualization tasks. Finally we developed a first draft and implementation of the trace an-
omaly detection by an unsupervised learning procedure.

ICPC - International Collegiate Programming Contest an der FAU: Since 1977 the International Col-
legiate Programming Contest (ICPC) takes place every year. Teams of three students try to solve about
13 programming problems within five hours. What makes this task even harder, is that there is only one
computer available per team.

In 2018 we conducted two local contests in Erlangen. In the winter semester there was a team contest
with teams consisting of at most three students. The main goal of this contest was to interest new students
in the contests. We had 30 FAU teams plus 57 more teams from universities all over Germany. Before the
second contest, as in the previous years, in the summer term the seminar Hello World - Programming for
the Advanced served to prepare students from different disciplines in algorithms and contest problems.
In the German wide contest of the summer term we selected the students that would represent the FAU
at the NWERC 2018 in Eindhoven (NL). 30 teams with students of computer science, computational
engineering, mathematics as well as informations and communication technology took the challenge. We
formed the NWERC teams out of the best participants in the qualifications, given the age restrictions. At
the NWERC in Eindhoven, our teams reached places 53, 57 and 63 out of the 119 teams participating.

ORKA-HPC — OpenMP for reconfigurable heterogenous architectures: High-Performance Computing
(HPC) is an important component of Europe’s capacity for innovation and it is also seen as a building
block of the digitization of the European industry. Reconfigurable technologies such as Field Programma-
ble Gate Array (FPGA) modules are gaining in importance due to their energy efficiency, performance,
and flexibility.

In 2018 we developed of a source-to-source compiler prototype for the rewriting of OpenMP C source
code. Additionally an HLS compiler prototype capable of translating C code into hardware has been de-
veloped as well. Finally we designed and implemented several experimental FPGA infrastructures for the
execution of accelerator cores.

ParCAn - Parallel code analysis on a GPU: In compiler construction there are analyses that propagate
information along the edges of a graph and modify it, until a fix point is reached and the information no
longer changes. In this project we build the ParCAn framework to accelerate such analyses by exploiting
the massive parallelism of graphic cards.

In 2018 we completed our comparative study on the efficiency of graph data structures on GPUs. To show
the effectiveness of our framework we integrated it into the LLVM compiler framework. We picked four
LLVM analyses and parallelized them with ParCAn. Ample measurements show that our framework can



accelerate LLVM’s compilation process by up to 40%. A publication was accepted at the 28th Internatio-
nal Conference on Compiler Construction and will receive the Best-Paper-Award.

RuNN - Recurrent Neuronal Networks (RNNs) for Real-Time Estimation of Nonlinear Motion Models:
With the growing availability of information about an environment (e.g., the geometry of a gymnasium)
and about the objects therein (e.g., athletes in the gymnasium), there is an increasing interest in bringing
that information together profitably (so-called information fusion) and in processing that information.
For example, one would like to reconstruct physically correct animations (e.g., in virtual reality, VR) of
complex and highly dynamic movements (e.g., in sports situations) in real-time. The core objective of
the project is therefore to evaluate how machine learning methods can be used to describe complex and
nonlinear movements. The aim is to investigate whether RNNs physically describe the movements of an
object correctly and how existing methods can be supported or replaced.

In 2018, a deeper understanding of the initial situation and problem definition was first established. Me-
thods of machine and deep learning for motion detection and motion reconstruction based on inertial, ca-
mera, and radio sensors were studied as well as various methods for feature extraction. The findings were
used to stabilize so-called relative Pedestrian Dead Reckoning (PDR) methods using motion classifiers.
The deeper radio signal understanding allowed the mapping of long-term errors in RNN-based motion
models to improve position accuracy, stability, and to predict near real-time. Additionally, a large-scale
social science study opened the world’s largest virtual dinosaur museum and showed that a pre-selected
(application-optimized) model of human movement robustly and accurately (meaning no significant im-
pact on simulator sickness) maps human motion, resp. predicts it.

SoftWater — Software Watermarking: Software watermarking means hiding selected features in code,
in order to identify it or prove its authenticity. This is useful for fighting software piracy, but also for
checking the correct distribution of open-source software. The goal of our research is the development
of a watermarking framework that automates this process by introducing the watermark while compiling
the code.

In 2018 two methods on symbolic execution and function synthesis were analysed within the bounds of
two bachelor theses in order to determine the most appropriate one for our approach.

4 Teaching

The Chair for Programming Systems teaches the compulsory modules Algorithms and Data Structures
(AuD) during the winter term and Parallel and Functional Programming (PFP) during the summer term.
Since those modules are offered to many other degree programs from different faculties (especially Busi-
ness & Information Systems resp. International Information Systems, Information and Communication
Technology, Mathematics and many more), the number of attending students and examinations reached a
new high score since the start of the modules: 773 students attended AuD during the winter term 2017/18
and 382 students attended PFP during the summer term 2018 — the number of examinations hit 712 in
AuD resp. 329 in PFP. The Chair offers different modules on Compiler Construction, Clustercomputing
and Testing of Software Systems to students specializing on programming systems. The tutorials Hallo
Welt! fiir Fortgeschrittene and Machine Learning were also fully booked within short time.

The Chair for Programming Systems supervised five master’s thesis, three master projects and three ba-
chelor’s thesis in total during the period under report.



5 Publications 2018

[1] Lugrin JL., Kern F.,, Schmidt R., Kleinbeck C., Roth D., Daxer C., Feigl T., Mutschler C., Latoschik
ME.: A Location-Based VR Museum. In 10th International Conference on Virtual Worlds and
Games for Serious Applications (VS Games 2018). 2018. doi:10.1109/VS-Games.2018.8493404

[2] Roth D., Kleinbeck C., Feigl T., Mutschler C., Latoschik ME.: Beyond Replication: Augmenting
Social Behaviors in Multi-User Social Virtual Realities In 25th IEEE Conference on Virtual Reality
and 3D User Interfaces (IEEE VR 2018) 2018. doi:10.1109/VR.2018.8447550

[3] Feigl T., Mutschler C., Philippsen M.: Head-to-Body-Pose Classification in No-Pose VR Tracking
Systems. In 25th IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR 2018). 2018.
doi:10.1109/VR.2018.8446495

[4] Feigl T., Mutschler C., Philippsen M.: Human Compensation Strategies for Orientation Drifts. In 25¢h
IEEE Conference on Virtual Reality and 3D User Interfaces. 2018. doi:10.1109/VR.2018.8446300

[5S] Lautenschlager F., Ciolkowski M.: Making Runtime Data Useful for Incident Diagnosis: An Ex-
perience Report. In International Conference on Product-Focused Software Process Improvement
(PROFES 2018). 2018. doi:10.1007/978-3-030-03673-7_33

[6] Gorse L., Loffler C., Mutschler C., Philippsen M.: Optical Camera Communication for Active Marker
Identification in Camera-based Positioning Systems. In 15th Workshop on Positioning, Navigation
and Communications (WPNC’18). 2018. doi:10.1109/WPNC.2018.8555846

[7] Feigl T., Nowak T., Philippsen M., Edelhdufler T., Mutschler C.: Recurrent Neural Networks on
Drifting Time-of-Flight Measurements. In 9th International Conference on Indoor Positioning and
Indoor Navigation (IPIN 2018). 2018. doi:10.1109/IPIN.2018.8533813

[8] Feigl T., Mutschler C., Philippsen M.: Supervised Learning for Yaw Orientation Estimation. In
Proceedings of the 9th International Conference on Indoor Positioning and Indoor Navigation (IPIN
2018). 2018. doi:10.1109/IPIN.2018.8533811


http://dx.doi.org/10.1109/VS-Games.2018.8493404
http://dx.doi.org/10.1109/VR.2018.8447550
http://dx.doi.org/10.1109/VR.2018.8446495
http://dx.doi.org/10.1109/VR.2018.8446300
http://dx.doi.org/10.1007/978-3-030-03673-7_33
http://dx.doi.org/10.1109/WPNC.2018.8555846
http://dx.doi.org/10.1109/IPIN.2018.8533813
http://dx.doi.org/10.1109/IPIN.2018.8533811

	Staff
	Overview
	Research projects
	Teaching
	Publications 2018

