
Annual Report of the Chair of Computer Science 2
(Programming Systems)

Address: Martensstr. 3, 91058 Erlangen
Phone: +49-9131-85-27621
Fax: +49-9131-85-28809
E-Mail: info@i2.informatik.uni-erlangen.de

Ordinarius:
Prof. Dr. Michael Philippsen
Honorary Professor:
Hon.-Prof. Dr.-Ing. Bernd Hindel
Hon.-Prof. Dr.-Ing. Detlef Kips
Professor Emeritus:
Prof. em. Dr. Hans Jürgen Schneider
Secretary:
Margit Zenk
Scientific Staff:
Michael Baer, M. Sc.
Dipl.-Inf. Thorsten Blaß
Tobias Feigl, M. Sc. (since October 01, 2017)
Florian Jung, M. Sc. (since December 01, 2017)
Marius Kamp, M. Sc.
Dipl.-Math. Jakob Krainz (until June 30, 2017)
Patrick Kreutzer, M. Sc.
Florian Mayer, M. Sc. (since August 01, 2017)
Dr.-Ing. Christopher Mutschler
Dipl.-Inf. Daniela Novac
Dr.-Ing. Norbert Oster, Akad. ORat
IT-support:
Dipl.-Ing. (FH) Helmut Allendorf
Manfred Uebler
Guest:
Dr.-Ing. Josef Adersberger
Florian Lautenschlager, M. Sc.
External Teaching Staff:
Dr.-Ing. Klaudia Dussa-Zieger
Dr.-Ing. Martin Jung

1



Since 2002 Prof. Michael Philippsen is heading the Chair of Computer Science 2 which
was founded in 1972. The group’s main focus is on Programming Systems for hete-
rogeneous Multicores.

Up to 2014/2015, we mainly took a system-level perspective and worked on the interface
to both the parallel hardware and the OS, on runtime system issues, and on how to
best express parallelism in program code. We strived to best harvest the potential of
parallelism that is slumbering within applications and to find the most efficient ways
to map it to the parallelism provided by the hardware. As such systems-oriented topics
continue to be relevant, some of our projects continue to address them.

Nowadays the Programming Systems Group mainly finds answers for professional soft-
ware engineers who develop industry-sized parallel programs for multicores, for distri-
buted networks of multicores, for parallel cloud computing, and for networks of embed-
ded systems.

1 Focus of research

A few corner stones stake out our field of programming system research: (a) We
develop and evaluate uniform programming models for heterogeneous systems. To
make the investment worthwhile, modules of parallel software need homogeneous in-
terfaces to gain portability across changing and heterogeneous configurations of mul-
ticores, GPUs, accelerators, FPGAs etc. (b) There is growing commercial relevance in
migrating legacy software to run on multicores. We investigate novel tools that work
on source code repositories, analyze them, and help developers to migrate, refactor
and parallelize software. In special cases, there are effective ways to even perform this
task automatically. (c) Since parallelism and synchronization issues make parallel soft-
ware more complex, software engineers need more support in their development and
maintenance tasks. Only with such tool support they can avoid, detect and fix mistakes
early on. And only with such tool support these tasks do no longer need the specialized
expertise of low-level systems programmers. We thus develop fast, interactive, and in-
cremental code analyses (that themselves may execute in parallel) that not only detect
race conditions, conflicting accesses to resources, etc., but that also provide support and
suggestions to developers while they are working in their codes with their IDEs. (d)
During the life cycle of parallel software, the nondeterministic behavior of concurrency
poses new challenges for testing of parallel code, for the assurance of quality and code-
authenticity, as well as for operation and diagnosis. We explore, when parallel code is
tested thoroughly enough, how to guard parallel code against attacks, how to generate
sets of test data for parallel programs, how to systematically track down the reasons of
erratic behavior of parallel codes, etc. Established techniques from sequential software

2



engineering cannot yet deal with the parallelism in the code that adds a new dimension
to these problems.

We follow a program-code-centric approach, we build operational prototypes for the
tools that we conceive, and we carry forward our principle of a thorough qualitative
and quantitative evaluation of our ideas.

2 Research projects

2.1 Analysis of Code Repositories

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Georg Dotzler
Marius Kamp, M. Sc.
Patrick Kreutzer, M. Sc.
Start: 1.1.2010

Software developers often modify their projects in a similar or repetitive way.
The reasons for these changes include the adoption of a changed interface to a library,
the correction of mistakes in functionally similar components, or the parallelization of
sequential parts of a program. If developers have to perform the necessary changes on
their own, the modifications can easily introduce errors, for example due to a missed
change location. Therefore, an automatic technique is desireable that identifies similar
changes and uses this knowledge to support developers with further modifications.

Extraction of Code-Changes

In 2017, we developed a new code recommendation tool called ARES (Accurate RE-
commendation System). It creates more accurate recommendation compared to previous
tools as its algorithms take care of code movements during pattern and recommendation
creation. The foundation of ARES lies in the comparison of two versions of the same
program. It extracts the changes between the two versions and creates patterns based
on the changed methods. ARES uses these patterns to suggest similar changes for the
source code of different programs automatically.

The extraction of code changes is based on trees. In 2016 we developed (and visibly
published) a new tree-based algorithm (MTDIFF) that improves the accuracy of the
change extraction.

3



Symbolic Execution of Code-Fragments

In 2014 we developed a new symbolic code execution engine called SYFEX to deter-
mine the behavioral similarity of two code fragments. In this way we aim to improve
the quality of the recommendations. Depending on the number and the generality of the
patterns in the database, it is possible that without the new engine SIFE generates some
unfitting recommendations. To present only the fitting recommendations to the devel-
opers, we compare the summary of the semantics/behavior of the recommendation with
summary of the semantics/behavior of the database pattern. If both differ too severely,
our tool drops the recommendation from the results. The distinctive features of SYFEX
are its applicability to isolated code fragments and its automatic configuration that does
not require any human interaction.

In 2015 SYFEX was refined and applied to code fragments from the repositories of
different software projects. In 2016 we investigated to which extend SYFEX can be
used to gauge the semantic similarity of submissions for a programming contest. In
2017 we optimized the implementation of SYFEX. We also began collecting a data set
of semantically similar methods from open source repositories.

Detection of Semantically Similar Code Fragments

SYFEX computes the semantic similarity of two code fragments. Therefore, it allows
to identify pairs or groups of semantically similar code fragments (semantic clones).
However, the high runtime of SYFEX (and similar tools) limit their applicability to
larger software projects. In 2016, we started the development of a technique to accelerate
the detection of semantically similar code fragments. The technique is based on so-
called base comparators that compare two code fragments using a single criterion (e.g.,
the number of used control structures or the structure of the control flow graph) and that
have a low runtime. These base comparators can be combined to form a hierarchy of
comparators. To compute the semantic similarity of two code fragments as accurately
as possible, we use genetic programming to search for hierarchies that approximate the
similarity values as reported by SYFEX for a number of pairs of code fragments. A
prototype implementation confirmed that the method is capable of detecting pairs of
semantically similar code fragments.

We further improved the implementation of this approach in 2017. Additionally, we
focused on evaluating the approach with pairs of methods from software repositories
and from programming exercises.

Semantic Code Search

The functionality that has to be implemented during the development of a software
product is often already available as part of program libraries. It is often advisable to
reuse such an implementation instead of rewriting it, for example to reduce the effort
for developing and testing the code.

4



To reuse an implementation that fits the purpose, developers have to find it first. To
this end developers already use code search engines on a regular basis. State-of-the-art
search engines work on a syntactic level, i.e., the user specifies some keywords or names
of variables and methods that should be searched for. However, current approaches do
not consider the semantics of the code that the user seeks. As a consequence, relevant
but syntactically different implementations often remain undetected (”false negatives”)
or the results include syntactically similar but semantically irrelevant implementations
(”false positives”). The search for code fragments on a semantic level is the subject of
current research.

In 2017 we began the development of a new method for semantic code search. The user
specifies the desired functionality in terms of input/output examples. A function syn-
thesis algorithm from the literature is then used to create a method that implements the
specified functionality as accurately as possible. Using our approach to detect similar
code fragments, this synthesized method is then compared to the methods of program
libraries to find semantically similar implementations. These implementations are then
presented as search results to the user. A first evaluation of our prototypical implemen-
tation shows the feasibility and practicability of the approach.

Clustering of Similar Code-Changes

To create generalized change patterns, it is necessary that the set of extracted code chan-
ges is split into subsets of changes that are similar to each other. In 2015 this detection of
similar code changes was improved and resulted in a new tool, called C3. We developed
and evaluated different metrics for a pairwise similarity comparison of the extracted co-
de changes. Subsequently, we evaluated different clustering algorithms known from the
literature and implemented new heuristics to automatically choose the respective para-
meters to replace the previous naive approach for the detection of similar code changes.
This clearly improved the results compared to the previous approach, i.e., C3’s new
techniques detect more groups of similar changes that can be processed by SIFE to
generate recommendations.

The aim of the second improvement is to automatically refine the resulting groups of si-
milar code changes. For this purpose we evaluated several machine learning algorithms
for outlier detection to remove those code changes that have been spuriously assigned
to a group.

In 2016 we implemented a new similarity metric for the comparison of two code changes
that essentially considers the textual difference between the changes (as generated, for
example, by the Unix tool ’diff’). We published both a paper on C3 and the dataset
(consisting of groups of similar changes) that we generated for the evaluation of our tool
under an open-source license, see https://github.com/FAU-Inf2/cthree . This dataset can
be used as a reference or as input data for future research. In addition, we prototypically
extended C3 by techniques for an incremental similarity computation and clustering.

5



This allows us to reuse results from previous runs and to only perform the absolutely
necessary work whenever new code changes are added to a software archive.

2.2 Automatic Detection of Race-Conditions

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Michael Baer, M. Sc.
Start: 1.1.2016

Large software projects with hundreds of developers are difficult to review and
often contain many bugs. Automatic tests are a well established technique to test
sequential and deterministic software. They test the whole project (system test) or
each module by itself (unit test). However, recent software contains more and more
parallelism. This introduces several new bug patterns, like deadlocks and concurrent
memory accesses, that are harder or even impossible to be detected reliably using
conventional test methods. Whether the faulty behavior arises depends on the concrete
scheduling of the threads which is indeterministic and varies between individual
executions depending on the underlaying system. Due to this unpredictable behavior
such bugs do not necessarily manifest in an arbitrary test run or may never arise in the
testing environment at all. As a result, conventional tests are not well suited for modern,
concurrent software.

With the project AuDeRace, we develop methods to efficiently and reliably detect con-
current bugs while keeping the additional effort for developers as low as possible. In an
initial approach we define a testing framework that allows the specification of a schedu-
ling plan to regain deterministic execution. However, a major problem still remains: The
developer has to identify and implement well suited test cases that cover the potential
fault in the program and execute them in a special deterministic way in order to trigger
the failure. Especially in the context of concurrency, it is difficult to visualize the beha-
vior of a program and identify the problematic parts. To overcome this, the critical parts
shall automatically be narrowed down before even writing dedicated test cases. Existing
approaches and tools for this purpose generate too many false positives or the analysis
is very time consuming, making their application to real world code prohibitive. The
goal of this project is to generate less false positives and increase the analysis speed by
combining existing static and dynamic analysis. This allows for the efficient use in not
only small example codes but also large and complex software projects.

In 2016 existing approaches were studied regarding their usability as a starting basis for
our project. The most promising method uses model checking and predefined assertions

6



to construct thread schedules that trigger the faulty behavior. However, the approach is
currently infeasible for larger projects because only very small codes could be analyzed
in reasonable time. Therefore, we focused on automatically detecting and removing
statements that are unrelated to the parallelism respectively to the potentially faulty
code parts in order to decrease the execution time of the preliminary static analysis.

In 2017 the work on automatically reducing programs to speed up furher analysis was
continued. Furthermore, we evaluated whether the concept of mutation testing can be
applied to parallel software as well. The results indicate that this extension is indeed
possible to rate tests qualitativly. However, to complete the analysis for larger programs
within reasonable runtimes, a few heuristics need to be applied during the process.

This project is a contribution of the Chair of Computer Science 2 (Programming Sys-
tems) to the IZ ESI (Embedded Systems Initiative, http://www.esi.fau.de/ )

2.3 Design for Diagnosability

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dr.-Ing. Josef Adersberger
Florian Lautenschlager, M. Sc.
Duration: 15.5.2013–30.9.2018
Sponsored by:
IuK Bayern

Many software systems behave obtrusively during the test phase or even in nor-
mal operation. The diagnosis and the therapy of such runtime anomalies is often time
consuming and complex, up to being impossible. There are several possible conse-
quences for using the software system: long response times, inexplicable behaviors, and
crashes. The longer the consequences remain unresolved, the higher is the accumulated
economic damage.

”Design for Diagnosability” is a tool chain targeted towards increasing the diagnosabi-
lity of software systems. By using the tool chain that consists of modeling languages,
components, and tools, runtime anomalies can easily be identified and solved, ideally
already while developing the software system. Our cooperation partner QAware GmbH
provides a tool called Software EKG that enables developers to explore runtime metrics
of software systems by visualizing them as time series.

The research project Design for Diagnosability enhances the eco-system of the existing
Software EKG. The Software-Blackbox measures technical and functional runtime va-
lues of a software system in a minimally intrusive way. We store the measured values

7



as time series in a newly developed time series database, called Chronix. Chronix is
an extremely efficient storage of time series that optimizes disk space as well as re-
sponse times. Chronix is an open source project (www.chronix.io) and is free to use for
everyone.

The newly developed Time-Series-API analyzes these values, e.g., by means of an out-
lier detection mechanism. The Time-Series-API provides multiple additional building
blocks to implement further strategies for identifying runtime anomalies.

The mentioned tools in combination with the existing Software EKG will become the
so-called Dynamic Analysis Workbench. This tool enables developers to diagnose, ex-
plain, and fix any occurring runtime anomalies both quickly and reliably. It will provide
diagnosis plans to localize and identify the root causes of runtime anomalies. The full
tool chain aims at increasing the quality of software systems, particularly with respect
to the metrics mean-time-to-repair and mean-time-between-defects.

Before we have successfully completed the project in July 2016, we have made the
following contributions:

• We have linked Chronix and a framework for distributed data processing so that
our anomaly analyses now scale to huge sets of time series data.

• We extended Chronix with additional components. Among them are, for example,
a more efficient storage model, some adapters for more time series databases,
additional server-side analysis functions, and some new time series types.

• We have published our benchmark for time series databases.

• We have investigated and implemented an approach to link application-level calls,
e.g., a login of a user, down to the resulting calls on the OS level.

Although funding expired in 2016, we made further contributions in 2017:

• We presented Chronix at the FAST conference in Santa Clara, CA in February
2017.

• We have equipped Chronix with interfaces to attach time series databases that are
used in the industry.

• We have developed an approach that determines the ideal cluster configuration
(w.r.t. processing time and costs) for a given analysis (specific function and set of
time series).

8



• We have expanded Spark, a framework for distributed processing of large-scale
data, so that it now can make use of GPUs in distributed time series analyses. We
presented the results at the Apache Big Data Conference in Miami, Florida, in
May 2017.

2.4 Adaptive Algorithms for RF-based Locating Systems

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dr.-Ing. Christopher Mutschler
Duration: 15.5.2016–31.3.2017
Sponsored by:
Fraunhofer Institut für Integrierte Schaltungen

The goal of this project is the development of adaptive algorithms for radio-based
realtime locating systems. In the scope of this project we cover three essential topics:

Automatic configuration of event detectors. In previous research projects we built the
basics for the analysis of noisy sensor data streams. However, event detectors still need
to be parameterized carefully to yield satisfying results. This work package explores
the possibilities of an automatic configuration of the event detectors on existing sensor
and event data streams. In 2016 we investigated concepts to extract optimal configura-
tions from available sensor data streams. For soccer sport scientists manually annotated
matches and scenes (e.g. player A kicks the ball with his/her left foot at time t). These
manually annotated scenes may later by used to optimize the hierarchy of event detec-
tors.

Evaluation of machine learning techniques for locating applications. In previous
research projects we already developed machine learning algorithms for radio-based
locating systems (e.g., evolutionary algorithms to estimate antenna positions and orien-
tations). This work package investigates further approaches that use machine learning to
enhance the performance of realtime locating systems. In 2016 we evaluated concepts to
replace parts of the position estimation algorithms by machine learning algorithms. Up
to now a signal processing chain (analog/digital conversion, time of arrival estimation,
Kalman filtering, motion estimation) uses the raw sensor data to calculate a position.
This often results in high installation and configuration costs for the setup of locating
systems in the application environment.

Evaluation of vision-based techniques to support radio-based realtime locating.
Radio-based locating systems have strengths if objects are occluded as microwaves may
pass through the occluding objects. However, metallic surfaces in the environment pose

9



challenges as they reflect RF-signals. Hence, the RF-signal that a transmitter emits ar-
rives at the antennas over multiple paths. It is then often difficult to extract the directly
received parts of the signal at the antenna and hence it is a challenge to properly estimate
the distance between the antenna and the emitter. In this work package we investigate
vision-based locating techniques that may help RF-based systems in calculating posi-
tions. In 2016 we developed two systems: CNNLok may be used by objects carrying
a camera (self-localization), i.e., inside-out tracking, whereas InfraLok uses cameras
installed in the environment to track objects with infrared light. CNNLok uses a con-
volutional neural network (CNN) that is trained on several camera images taken in the
environment (at known places). At runtime the CNN receives a camera image and cal-
culates the position of the camera. InfraLok detects infrared LEDs using a multi-camera
system and calculated the position of objects in space.

2.5 Incremental Code Analysis

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Math. Jakob Krainz
Duration: 1.4.2012–30.6.2017

To ensure that errors in a program design are caught early in the development
process, it is useful to detect mistakes already during the editing of the code. For that
the employed analysis has to be fast enough to enable interactive use. One method to
achieve this is the use of incremental analysis, which combines analysis results of parts
of the program to analyze the whole program. As an advantage, it is then possible to
re-use large parts of the analysis results when a small change to the program occurs,
namely for the unaffected parts of the program and for libraries. Thus the work required
for analysis can be drastically reduced, which makes the analysis useful for interactive
use.

Our analysis is based on determining, for (parts of) functions, which effects their execu-
tion can have on the state of a program at runtime. To achieve this, the runtime state of
a program is modeled as a graph, which describes the variables and objects in the pro-
gram’s memory and their points-to relationship. The function is executed symbolically,
to determine the changes made to the graph or, equivalently, to the runtime state descri-
bed by it. To determine the effects of executing pieces of code in order, function calls,
loops, etc., the change descriptions for smaller parts of the program can be combined in
various ways, resulting in descriptions for the behavior of larger parts of the program.
The analysis works in a bottom-up fashion, analyzing a called method before analyzing
the callee (with recursion being analyzable as well).

10



In 2017 we continued improving the algorithms and data structures used for the ana-
lysis. In addition to further development of the analysis’ scalability towards large code
bases, and of incremental analysis (where we re-used the analysis results for unmodified
program parts), we focused on an easy to grasp documentation of the analysis, in order
to understand it, and to lay theoretical basics to verify the analysis’ correctness.

2.6 International Collegiate Programming Contest at the FAU

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Daniela Novac
Michael Baer, M. Sc.
Dipl.-Math. Jakob Krainz
Dipl.-Inf. Tobias Werth
Start: 1.11.2002

The Association for Computing Machinery (ACM) has been hosting the Interna-
tional Collegiate Programming Contest (ICPC) for many years. Teams of three students
try to solve nine to eleven programming problems within five hours. What makes this
task even harder, is that there is only one computer available per team. The problems
demand for solid knowledge of algorithms from all areas of computer science and
mathematics, e.g., graphs, combinatorics, strings, algebra, and geometry.

The ICPC consists of three rounds. First, each participating university hosts a local con-
test to find the up to three teams that are afterwards competing in one of the various
regional contests. Germany lies in the catchment area of the Northwestern European
Regional Contest (NWERC) with competing teams from Great Britain, Benelux, Scan-
dinavia, etc. The winners of all regionals in the world (and some second place holders)
advance to the world finals in spring of the following year (2018 in Beijing, China).

In 2017 two local contests took place in Erlangen. In the winter semester we conducted
a team contest with teams consisting of at most three students. The main goal of this
contest was to interest new students in the contests. We had 29 FAU teams plus 35 more
teams from universities all over Europe. Before the second contest, as in the previous
years, in the summer term the seminar ”Hello World - Programming for the Advanced”
served to prepare students from different disciplines in algorithms and contest problems.
In the German-wide contest of the summer term we selected the students that would
represent the FAU at the NWERC 2017 in Bath (UK). A record number of 36 teams
with students of computer science, computational engineering, mathematics as well as
informations and communication technology took the challenge.

11



We formed the NWERC teams out of the best participants in the qualifications, given
the age restrictions. At the NWERC in Bath, our teams reached places 14, 29 and 57 out
of the 120 teams participating - a solid result, only narrowly missing on a medal.

2.7 Parallel code analysis on a GPU

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Thorsten Blaß
Start: 1.7.2013

In compiler construction there are analyses that propagate information along the
edges of a graph and modify it, until they reach a fix point.

In this project we build a framework to accelerate such analyses by exploiting the mas-
sive parallelism of graphic cards.

Graphs are fundamental data structures to represent relations between data (e.g., social
networks, web link analysis). Graphs can have millions/billions of vertices/edges. GPUs
can process graphs with 1000th of threads in parallel very efficiently. Graph Analyses
use the Bulk Synchronous Parallel Model (BSP) which divides the analysis into three
strictly separated phases: computation, communication and synchronization. The two
latter ones require communications with the host system (CPU) that slow down execu-
tion. Our GPU-based compiler works after the BSP model too. Internally the code is
represented as (control flow-) graph. This graph is transferred to the GPU and gets ana-
lyzed. Every code modification triggers this cycle. The Graph has thus to be generated
and transferred to the GPU very fast. Publications in the field of graph-analysis focus
on optimizing the computation time. The end-to-end execution time (including commu-
nication and synchronization) is ignored but has a strong impact on the run-time. Our
compiler considers every phase of the BSP. In 2017 we published a paper that signifi-
cantly reduces the time for synchronization.

In addition, we focus on speeding up of the communication phase of the BSP model.
Communication here means the transfer of the graph in both directions (GPU <->
Host). While the graph and data structure used has strong impact on the run-time be-
havior it also influences the computation phase. Since there is no publication in the
literature that systematically investigates the impact of the data-structure on the end-to-
end run-time of a GPU graph analysis, we implemented a number of benchmarks that
use different attributes of graphs (e.g., access successor/predecessor, random node ac-
cess) and eight different graph data structures to represent graphs on the GPU. For the

12



measurements we used a number of structurally different graphs. The results are likely
to help developers in picking the right graph data structure for there GPU-problem.

2.8 Software Watermarking

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Daniela Novac
Start: 1.1.2016

Software watermarking means hiding selected features in code, in order to iden-
tify it or prove its authenticity. This is useful for fighting software piracy, but also for
checking the correct distribution of open-source software (like for instance projects
under the GNU license). The previously proposed methods assume that the watermark
can be introduced at the time of software development, and require the understanding
and input of the author for the embedding process. The goal of our research is the
development of a watermarking framework that automates this process by introducing
the watermark while compiling the code and can also be used for existing code. As
a first approach we study a method that is based on symbolic execution and function
synthesis.

In 2017 several function synthesis methods were analysed in order to determine the
most appropriate one for our approach.

3 Publications 2017

– Feigl, T., Mutschler, C., Philippsen, M., & Kõre, E. (2017). Acoustical manipu-
lation for redirected walking. In Proceedings of the 23rd ACM Symposium on
Virtual Reality Software and Technology (VRST ’17) (pp. 45:1-45:2). Gothen-
burg, SE: New York: ACM.

– Blaß, T., Philippsen, M., & Veldema, R. (2017). Efficient Inspected Critical Secti-
ons in data-parallel GPU codes. In Rauchwerger, Lawrence (Eds.), Proceedings of
the 30th International Workshop on Languages and Compilers for Parallel Com-
puting (LCPC 2017) (pp. -). College Station, TX, US: Berlin: Springer-Verlag
Berlin Heidelberg.

– Polzer, T., & Adersberger, J. (2017, May). Leveraging the GPU on Spark. Paper
presentation at Apache: Big Data North America 2017, Miami, FL, US.

13



– Hammer, J., Gaukler, M., Kanzler, P., Hörauf, P., & Novac, D. (2017). FAU Fa-
bLab: A Fabrication Laboratory for Scientists, Students, Entrepreneurs and the
Curious.

– Oster, N., Kamp, M., & Philippsen, M. (2017). AuDoscore: Automatic Grading
of Java or Scala Homework. In Sven Strickroth Oliver Müller Michael Striewe
(Eds.), Proceedings of the Third Workshop ”Automatische Bewertung von Pro-
grammieraufgaben” (ABP 2017). Potsdam, DE: Online Proceedings for Scientific
Conferences and Workshops (CEUR-WS).

– Krainz, J., & Philippsen, M. (2017). Diff Graphs for a fast Incremental Pointer
Analysis. In ACM (Eds.), Proceedings of the 12th Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems
(ICOOOLPS’17). Barcelona, ES: ACM DL.

– Ellner, R. (2017). Modellierung und effiziente Ausführung von Softwareentwick-
lungsprozessen (Dissertation).

– Dotzler, G., Kamp, M., Kreutzer, P., & Philippsen, M. (2017). More Accurate
Recommendations for Method-Level Changes. In Proceedings of 2017 11th Joint
Meeting of the European Software Engineering Conference and the ACM SIGS-
OFT Symposium on the Foundations of Software Engineering (ESEC/FSE2017)
(pp. 798-808). Paderborn, DE: New York, NY, USA: ACM DL.

– Lautenschlager, F., Philippsen, M., Kumlehn, A., & Adersberger, J. (2017). Chro-
nix: Long Term Storage and Retrieval Technology for Anomaly Detection in Ope-
rational Data. In USENIX Association (Eds.), Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST 17) (pp. 229-242). Santa
Clara, CA, US.

– Tausch, N. (2017). Eine domänenspezifische Sprache zur Analyse von Software-
Verfolgbarkeitsinformationen (Dissertation).

– Roth, D., Kleinbeck, C., Feigl, T., Mutschler, C., & Latoschik, M.-E. (2017, Oc-
tober). Social Augmentations in Multi-User Virtual Reality: A Virtual Museum
Experience. Poster presentation at 2017 IEEE International Symposium on Mi-
xed and Augmented Reality (ISMAR-Adjunct), Nantes, FR.

4 Exam theses (german only)

– Master Thesis: Distributed GPU-accelerated time series analysis with Apache
Spark and Chronix. Bearbeiter: Tobias Polzer (beendet am 16.01.2017); Betreuer:
Dr.-Ing. Josef Adersberger; Prof. Dr. Michael Philippsen

14



– Master Thesis: Ermittlung des Skalierungsbedarfs bei der Verarbeitung und
Analyse von Zeitreihendaten. Bearbeiter: Sebastian Haubner (beendet am
23.01.2017); Betreuer: Florian Lautenschlager, M. Sc.; Prof. Dr. Michael Phil-
ippsen

– Master Thesis: Werkzeug zur automatischen Ergänzung bestehender Testsuiten
zur maschinellen Bewertung studentischer Abgaben. Bearbeiter: Guillermo Jan-
ner (beendet am 15.02.2017); Betreuer: Marius Kamp, M. Sc.; Dr.-Ing. Norbert
Oster, Akad. ORat; Prof. Dr. Michael Philippsen

– Studienarbeit: Beschreibung von Varianten im Systemtest mit Hilfe von domain
specific languages (DSLs). Bearbeiter: Max Draf (beendet am 10.03.2017); Be-
treuer: Dr.-Ing. Martin Jung; Hon.-Prof. Dr.-Ing. Detlef Kips

– Hausarbeit: Konzeption und Umsetzung eines Werkzeugs für den Mutationstest
mit spezialisierten Operatoren für Nebenläufigkeitsfehler. Bearbeiter: Benjamin
Bösl (beendet am 27.03.2017); Betreuer: Michael Baer, M. Sc.; Dr.-Ing. Norbert
Oster, Akad. ORat; Prof. Dr. Michael Philippsen

– Master Thesis: Analyse und Bewertung von Software-Architekturen zwecks Un-
terstützung der präventiven Wartung durch Restrukturierung. Bearbeiter: Andreas
Grünwald (beendet am 4.4.2017); Betreuer: Dr.-Ing. Norbert Oster, Akad. ORat;
Patrick Kreutzer, M. Sc.; Marius Kamp, M. Sc.; Prof. Dr. Michael Philippsen

– Bachelor Thesis: Exploiting Reinforcement Learning for complex trajectory plan-
ning for mobile robots. Bearbeiter: Leonid Butyrev (beendet am 01.06.2017); Be-
treuer: Dr.-Ing. Thorsten Edelhäußer; Prof. Dr. Michael Philippsen

– Bachelor Thesis: Entwicklung eines Werkzeugs zur Bestimmung der Fehlerauf-
deckungsgüte von Testfällen beim Mutationstest mit Operatoren für nebenläufige
Programme. Bearbeiter: Stefan Kraus (beendet am 12.06.2017); Betreuer: Dr.-
Ing. Norbert Oster, Akad. ORat; Michael Baer, M. Sc.; Prof. Dr. Michael Philipp-
sen

– Bachelor Thesis: Modellieren und Generieren von Aktionsplänen für autonome
mobile Systeme. Bearbeiter: Robert Klinger (beendet am 02.10.2017); Betreuer:
Hon.-Prof. Dr.-Ing. Detlef Kips; Dr.-Ing. Martin Jung

– Bachelor Thesis: Semantische Code-Suche mittels Funktionssynthese. Bearbei-
ter: Christian Spangler (beendet am 21.12.2017); Betreuer: Patrick Kreutzer, M.
Sc.; Marius Kamp, M. Sc.; Prof. Dr. Michael Philippsen

15


	Focus of research
	Research projects
	Analysis of Code Repositories
	Automatic Detection of Race-Conditions
	Design for Diagnosability
	Adaptive Algorithms for RF-based Locating Systems
	Incremental Code Analysis
	International Collegiate Programming Contest at the FAU
	Parallel code analysis on a GPU
	Software Watermarking

	Publications 2017
	Exam theses (german only)

