Annual Report of the Chair of Computer Science 2
(Programming Systems)

Address: Martensstr. 3, 91058 Erlangen
Phone: +49-9131-85-27621

Fax: +49-9131-85-28809

E-Mail: info@i2.informatik.uni-erlangen.de

Ordinarius:

Prof. Dr. Michael Philippsen
Honorary Professor:

Hon.-Prof. Dr.-Ing. Bernd Hindel
Hon.-Prof. Dr.-Ing. Detlef Kips
Professor Emeritus:

Prof. em. Dr. Hans Jiirgen Schneider
Secretary:

Margit Zenk

Scientific Staff:

Dipl.-Inf. Thorsten Blal3

Dipl.-Inf. Daniel Brinkers

Dipl.-Inf. Georg Dotzler

Marius Kamp, M. Sc. (from January 01, 2015)
Demian Kellermann, M. Sc. (until April 30, 2014)
Dr.-Ing. Stefan Kempf (until September 30, 2014)
Dipl.-Math. Jakob Krainz

Andreas Kumlehn, M. Sc.

Dr.-Ing. Christopher Mutschler
Dr.-Ing. Norbert Oster

Norbert Tausch, M. Eng.

PD Dr. Ronald Veldema

Dipl.-Inf. Tobias Werth

IT-support:

Dipl.-Ing. (FH) Helmut Allendorf
Manfred Uebler

Guest:

Dr.-Ing. Josef Adersberger

Dipl.-Inf. Samir Al-Hilank
Dipl.-Inf. Ralf Ellner

Dr.-Ing. Martin Jung

Florian Lautenschlager, M. Sc.
Dr.-Ing. Stephan Otto

Dipl.-Inf. Mykola Protsenko



External Teaching Staff:
Dr.-Ing. Klaudia Dussa-Zieger
Dr.-Ing. Martin Jung

Dr.-Ing. Stephan Otto

The Chair of Computer Science 2 (programming systems) was founded in 1972
and is headed by Prof. Michael Philippsen (as the successor of Prof. H.-J. Schneider)
since April 2002. Closely associated with the programming systems group is the
professorship for Didactics of Computer Science.

1 Focus of research

The main research topics in the programming systems group are programming of paral-
lel or distributed systems and programming of embedded or mobile systems. Software
(and its development) for such systems should ideally be as complex, portable, main-
tainable and robust as existing software for single core systems and workstations. It is
our long-term goal to allow applications to take full advantage of the available compu-
ting and network power. A particular focus lies on programming systems for multi-cores
because more and more cheap multi-core high-performance parallel hardware (for ex-
ample graphics cards) is available. This will have an unpredictable impact on the future
of the software landscape. Research results of the group are always evaluated by means
of prototypes and demonstrators.

Important Research Areas

* Exploit the available parallelization potential. In the future the clock rate of
multi-core systems will grow only slowly whereas the number of cores will grow.
This makes it necessary to exploit the parallelization potential of already older,
existing software to allow it to benefit from the new hardware. As a consequence,
in most application areas a change to parallel computing is unavoidable. There-
fore, the programming systems group develops tools to support the programmer
interactively in reengineering existing sequential applications. It also develops ar-
chitectural patterns for new software projects that scale automatically to support
a growing number of cores.

* Achieve portability in high-performance applications. Up to the present, app-
lication programmers achieve the best possible performance results only if they
handle latency issues and communications between different components of the
system manually, optimize their code with hardware specific "tricks” and split



their application into multiple sections to outsource them to other hardware
(for example graphics cards). To change this situation, the programming sys-
tems group researches the performance impact of higher programming abstrac-
tion layers that would improve programming productivity and software portabi-
lity. The improvements are caused by generated code that allows the distribution
of the program onto multiple heterogeneous system components to permit par-
allel execution. The higher abstraction layer makes the communication between
the components transparent for the developer. To increase the efficiency of this
approach it is necessary to give the programmer the possibility to express availa-
ble domain knowledge in the programming language. For the higher abstraction
layer, the details of the hardware architecture are hidden from the developer (for
example by library functions or programming language extensions).

Adapt the degree of parallelism dynamically. High-performance applications
are often developed for a fixed number of cores. As requested cluster nodes of a
batch system are statically assigned for a fixed time period, inefficient reservation
gaps are unavoidable. Similar problems appear in multi-threaded applications on
multi-core systems. The programming systems group works on the dynamic ad-
aptation of the extent of parallelism by the means of code transformations (under
consideration of the resulting data redistribution) and operating system interacti-
ons. As control flow based synchronization measures interfere with the necessa-
ry analyzes, the programming systems group researches new programming con-
structs that can replace the existing ones and allow to specify the synchronization
in a data-centric way.

Develop Testing for Parallelism. In software engineering, testing has always
assumed an important role. Code coverage, test data generation, reliability as-
sessment etc. are tools of the trade. Unfortunately, current research insufficiently
covers the indeterminism caused by concurrency. To deal with that issue, the pro-
gramming systems group develops tools that consider (based on the coverage cri-
teria) interleavings of parallel threads in their test data generation. This topic also
includes research on operating systems and schedulers. As concurrency consi-
derably increases the search space of the test generation it is necessary to develop
infrastructures that allow the test generation and execution on a cluster.

Improve of Software Development Processes. The current development practi-
ce of complex, business or security critical software in global distributed teams
(commonly found in the software industry) demands compliance with well-
defined software development processes. To support the enforcement of this re-
quirement, appropriate development tools are used. The Practical Software Engi-
neering research group that is lead by the honorary professors Dr. Bernd Hindel



and Dr. Detlef Kips cover the corresponding research area. Both possess long term
experience in industrial software projects as managers of medium sized software
companies. The goal of the Practical Software Engineering group is the develop-
ment of a machine executable notation for modeling of software development pro-
cesses. For that purpose the research group examines the semi-automatic retrieval
of traceability information from the artefacts of different tools and notations as
well as the model based development, integration and configurations of software
components, used in the design of automotive embedded systems.

2 Research projects

2.1 Design for Diagnosability

Project manager:

Prof. Dr. Michael Philippsen
Project participants:
Andreas Kumlehn, M. Sc.
Dr.-Ing. Josef Adersberger
Florian Lautenschlager, M. Sc.
Start: 15.5.2013

Sponsored by:

IuK Bayern

Contact:

Prof. Dr. Michael Philippsen
Phone: +49-9131-85-27625
Fax: +49-9131-85-28809
E-Mail: michael.philippsen @fau.de

Many software systems behave obtrusively during the test phase or even in nor-
mal operation. The diagnosis and the therapy of such runtime anomalies is often time
consuming and complex - up to being impossible. There are several possible conse-
quences for using the software system: long response times, inexplicable behaviors, and
crashes. The longer the consequences remain unresolved, the higher is the accumulated
economic damage.

“Design for Diagnosability” is a tool chain targeted towards increasing the diagnosabi-
lity of software systems. By using the tool chain that consists of modeling languages,
components, and tools, runtime anomalies can easily be identified and solved - ideally
already while developing the software system. Our cooperation partner QAware GmbH



offers a tool called Software EKG that enables developers to explore runtime metrics of
software systems by visualizing them as time series.

The research project Design for Diagnosability enhances the ecosystem of the existing
Software EKG. The Software-Blackbox measures technical and functional runtime va-
lues of a software system in a minimally intrusive way. We store the measured values as
time series in a newly developed time series database. This time series database is geared
towards an extremely efficient storage of a multitude of time series that optimizes disk
space as well as response times.

The newly developed Time-Series-API analyzes these values, e.g. by means of an out-
lier detection mechanism. The Time-Series-API provides multiple additional building
blocks to implement further strategies for identifying runtime anomalies.

The mentioned tools in combination with the existing Software EKG will become the
so-called Dynamic Analysis Workbench. This tool enables developers to diagnose, ex-
plain and fix any occurring runtime anomalies both quickly and reliably. It will provide
diagnosis plans to localize and identify the root causes of runtime anomalies.

The full tool chain aims at increasing the quality of software systems, particularly in
regard to the metrics mean-time-to-repair and mean-time-between-defects.

2.2 Efficient Software Architectures for Distributed Event Proces-
sing Systems

Project manager:

Prof. Dr. Michael Philippsen

Project participants:

Dr.-Ing. Christopher Mutschler

Duration: 15.11.2010-15.5.2016

Sponsored by:

Fraunhofer Institut fiir Integrierte Schaltungen

Localization Systems (also known as Realtime Location Systems, or RTLS) be-
come more and more popular in industry sectors such as logistics, automation, and
many more. These systems provide valuable information about whereabouts of objects
at runtime. Therefore, processes can be traced, analyzed and optimized. Besides the
research activities at the core of localization systems (like resilience and interference-
free location technologies or methods for highly accurate positioning), algorithms and
techniques emerge that identify meaningful information for further processing steps.
Our research focuses on automatic configuration methods for RTLSs as well as on the
generation of dynamic motion models and techniques for event processing on position
streams at runtime.



In 2011, we investigated whether events can be predicted after analyzing and learning
event streams from the localization system at runtime. As a result, we are able to deduce
models that represent the information buried in the event stream to predict future events.

We developed several methods and techniques in 2012 that process and detect events
with low latency. Events (composite, complex) can be detected by means of a hierarchi-
cal aggregation of sub-events that themselves are detected by (several) event detectors
processing sub-information in the event stream. This greatly reduces the complexity of
the detection components and renders them fully maintainable. They even can use par-
allel or distributed cluster architectures more efficiently so that important events can be
detected within a few milliseconds.

In 2013 we further minimized detection latency in distributed event-based systems:
first, a new migration technique modifies and optimizes the allocation of software com-
ponents in a networked environment at runtime to minimize networking overhead and
detection latencies. Second, a speculative event processing technique uses conservative
buffering techniques to exploit available system resources. We also created and publis-
hed a representative data set (consisting of realtime position data and event streams) and
a corresponding task description.

In 2014 we investigated fundamental approaches zu handle uncertainties (both w.r.t. the
definition of event detectors and to the events). We implemented a promising prototype
of an event-based system that is no longer deterministic but instead evaluates several
possible system states in parallel to achieve a detection with a much higher robustness
and correctness.

The project is a contribution of the Programming Systems Group to the IZ ESI'

2.3 Embedded Systems Institute

Project manager:

Prof. Dr. Michael Philippsen
Project participants:
Dr.-Ing. Stefan Kempf
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blaf3
Dipl.-Inf. Tobias Werth
Dr.-Ing. Christopher Mutschler
Andreas Kumlehn, M. Sc.
Dr.-Ing. Norbert Oster
Demian Kellermann, M. Sc.
Start: 1.9.2007

TURL: http://www.esi.uni-erlangen.de/



In September 2007 the ESI — Embedded System Institute — was founded as an
interdisciplinary center at the Friedrich-Alexander-University (FAU) with the goal
to coordinate and organize research, teaching, and further education in the field of
embedded systems.

ESI brings together existing skills within the university and interests, activities, and
goals of large and medium sized companies in the field of embedded systems.

Companies obtain access to latest research results and the opportunity to develop com-
mon projects, to establish ties, and to find co-operation partners. The ESI concentrates
the skills of the chairs of computer sciences and makes them usable for co-operation
projects. Hence, the latest research results can be transferred into products in a spee-
dy way. Finally, the ESI may serve as a platform for recruiting excellent students and
highly qualified young academics at an early stage.

The chair of computer science department 2 (Prof. Philippsen) is one of the active foun-
ders of the ESI and carries out research projects within the ESI.

More information can be found at http://www.esi.uni-erlangen.de and http://www.esi-
anwendungszentrum.de

2.4 ErLaDeF - Embedded Realtime Language Development Fra-
mework

Project manager:

Prof. Dr. Michael Philippsen
Project participants:

PD Dr. Ronald Veldema
Dipl.-Inf. Thorsten Blal3
Dipl.-Math. Jakob Krainz
Dipl.-Inf. Daniel Brinkers
Start: 1.1.2012

Contact:

PD Dr. Ronald Veldema
Phone: +49-9131-85-27622
Fax: +49-9131-85-28809
E-Mail: ronald.veldema@fau.de

ErLaDeF is our test-bed for new programming language and compiler techni-
ques. Our main focus is on building infrastructure for easier (hard + soft) real-time
embedded parallel systems programming.



We focus on hard real-time embedded systems as they are about to go massively parallel
in the near future.

Real-time and embedded systems also have hard constraints on resource usage. For
example, a task should complete in a fixed amount of time, have guaranteed upper-limits
on the amount of memory used, etc.

We are developing different ways to manage this concurrency using a combination of
strategies: simpler language features, automatic parallelization, libraries of parallel pro-
gramming patterns, deep compiler analysis, model checking, and making compiler ana-
lysis fast enough for interactive use.

Runtime Parallelization of Programs

Our automatic parallelization efforts are currently focused on dynamic parallelization.
While a program is running, it is analyzed to find loops where parallelization can help
performance. Our current idea is to run long-running loops three times. The first two
runs analyze the memory accesses of the loop and can both run in parallel. The first
run stores in a shared data structure for every memory address in which loop iteration a
write access happens. We do not need any synchronization for this data structure, only
the guarantee that one value is written to memory, when two concurrent writes happen.
In the second pass we check for every memory access, if it has a dependency to one of
the stored write accesses. A write access is part of any data-dependency, so we can find
all types of data dependencies. If we do not find any, the loop is actually run in parallel.
If we find dependencies, the loop is executed sequentially. We can execute the analyses
in parallel to a modified sequential execution of the first loop iterations.

In 2014 we enhanced the analysis so that a loop can start running while the remainder
of the loop is analyzed to see if it can be run in parallel. To allow the sequential loop
to execute while the tail of the loop is analyzed we needed to instrument the sequential
loop slightly. The result is that the loop runs only slightly slower if the loop cannot be
parallelized, but if the loop is found to be parallelizable, speedup is near to linear.

Finally, we also created a new language that uses the above library for run-time paralleli-
zation. Any loops that the programmer marked as candidates for run-time parallelization
are analyzed for constructs that the library cannot yet handle. If the loop is clean, code
is generated that uses the library’s macros.

Script based language for embedded systems (Pylon)

Pylon is a language that is close to scripting languages (but is statically typed). A large
part of the complexity that a programmer would normally take care of when creating an
application, is moved to the compiler (i.e., type inference). The programmer does not
have to think about types at all. By analyzing the expressions in the program, types are
inferred (duck typing). The language is also implicitly parallel, the programmer does not
need to have expert knowledge to parallelize an application. The compiler automatically

8



decides what to run in parallel. Finally, the language is kept simple so that learning the
language remains easy for novice programmers. For example, we kept the number of
keywords small.

Any language constructs that make analyzing the program hard for a compiler has been
omitted (pointer arithmetic, inheritance, etc.). Any removed features have been replaced
by simpler variants that can be easily analyzed. The current focus of this project lies in
supporting the programmer in designing the code. The previous programming language
research results have been absorbed in the Pylon project. For example, the prior research
results on alternatives to polymorphism and inheritance have been added to the Pylon
project. This allows us to report errors at compile time where other languages can only
find them at run-time.

Analysis

Object-oriented languages offer the possibility to dynamically allcoate objects. The me-
mory required for this is allocated at run-tie. However, in contrast to desktop systems,
embedded systems typically have very little memory. If the 'new’ operator is used often
in an embedded system (that are now starting to be programmed with higher-level lan-
guages such as Java and C++ that include 'new’), memory can be exhausted at run-time
causing an embedded system to crash.

In 2014, we created an analysis to find this problem at compile-time and report this to
the developer.

To detect memory exhaustion at compile-time, the analysis determines the live-time of
references to objects. If there are no more references to an object, the object can be
removed from memory. Normally, such reference counting schemes are performed at
run-time, we, however, perform reference counting at compile-time in an interactive
fashion. The result is that memory management errors can be found at compile-time
instead of at run-time. Additionally, the static reference counting increases a program’s
performance as the reference counts do not have to be manipulated at run-time. If it
is statically determined that an object can be removed, the developer needs to insert a
"delete’ statement. With explicit memory management, we are now able to statically
determine a program’s worst-case memory requirements. The whole analysis outlined
above is integrated into Pylon and a predicate propagation framework previously repor-
ted on. Note that the analysis is language independent, however, and can be applied to
other languages as well (Java, C++, etc.). However, we can in that case no guarantee that
reference counts are correctly computed as we require Pylon’s analyzability for this.

In 2014, we also have continued to work on interactive program analysis. The frame-
work we developed in 2013 to do program analysis in a lazy manner, suitable for inter-
active use, was expanded and modified in order to support big code bases, to analyze
them and keep the analysis results for later use. This enables us to precisely analyze



programs that use libraries, by first analyzing the library, and then using the library’s
analysis result to get precise analysis results for our program.

The ErLaDeF project is a contribution of the Chair of Computer Science 2 (Pro-
gramming Systems) to the IZ ESI (Embedded Systems Initiative, http://www.esi-
anwendungszentrum.de/)

2.5 Graphs and Graph Transformations

Project manager:

Prof. em. Dr. Hans Jiirgen Schneider
Start: 1.10.2004

Contact:

Prof. em. Dr. Hans Jiirgen Schneider
Phone: +49-9131-85-27620

Fax: +49-9131-85-28809

E-Mail: hans.juergen.schneider @fau.de

Graphs are often used as an intuitive aid for the clarification of complex matters.
Examples of outside computer science include, e.g., chemistry where molecules are
modeled in a graphical way. In computer science, data or control flow charts are often
used as well as entity relationship charts or Petri-nets to visualize software or hardware
architectures. Graph grammars and graph transformations combine ideas from the
fields of graph theory, algebra, logic, and category theory, to formally describe changes
in graphs.

Category theory is an attractive tool for the description of different structures in a uni-
form way, e.g., the different models for asynchronous processes: Petri-Nets are based
on standard labeled graphs, state charts use hierarchical graphs, parallel logic program-
ming can be interpreted in a graph-theoretical way using so-called jungles, and the actor
systems can be visualized as graphs, whose labeling alphabet is a set of term graphs.

Lately, we have concentrated our attention on a theoretical aspect.

Our work on graph transformation is based on notions borrowed from category theo-
ry. The so-called double-pushout approach represents a production by two morphisms
starting at a common interface graph. One pushout glues the left-hand side of the pro-
duction into the context, the other does with the right-hand side. Effectively constructing
a derivation step, however, requires finding a pushout complement on the left-hand si-
de. Some people consider this disadvantageous. In 1984, Raoult has proposed to model
graph rewriting by a single pushout; Loewe has extensively studied this approach, but
the discussion was mainly restricted to injective morphisms. Under this assumption, the

10



approaches are equivalent. Some relevant applications such as term graph rewriting, ho-
wever, lead to non-injective morphisms. We have examined these cases in detail, and we
could show that the equivalence also holds for non-injective cases as long as the handle
satisfies some reasonable conditions.

2.6 International Collegiate Programming Contest at the FAU

Project manager:

Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Tobias Werth
Dipl.-Inf. Daniel Brinkers
Dipl.-Math. Jakob Krainz
Start: 1.11.2002

Contact:

Dipl.-Inf. Tobias Werth
Phone: +49-9131-85-28865
Fax: +49-9131-85-28809
E-Mail: tobias.werth@fau.de

The Association for Computing Machinery (ACM) has been hosting the Interna-
tional Collegiate Programming Contest (ICPC) for many years. Teams of three students
try to solve nine to eleven programming problems within five hours. What makes this
task even harder, is that there is only one computer available per team. The problems
demand for solid knowledge of algorithms from all areas of computer science and
mathematics, e.g. graphs, combinatorics, strings, algebra, and geometry.

The ICPC consists of three rounds. First, each participating university hosts a local
contest to find the up to three teams that are afterwards competing in one of the various
regional contests. Germany lies in the catchment area of the Northwestern European
Regional Contest (NWERC) with competing teams from e.g. Great Britain, Benelux,
and Scandinavia. The winners of all regionals in the world (and some second place
holders) advance to the world finals in spring of the following year.

In 2014 two local contests took place in Erlangen. In the winter semester we conduc-
ted a team contest with teams consisting of at most three students. The main goal of
this contest was to interest new students in the contests. We had 24 FAU teams plus
35 more teams from universities all over Europe. Before the second contest, as in the
previous years, in the summer term the seminar “Hello World - Programming for the
Advanced” served to prepare students from different disciplines in algorithms and con-
test problems. In the German-wide contest of the summer term we selected the students
that would represent the FAU at the NWERC 2014 in Linkdping. 19 teams with students

11



of computer science, computational engineering, mathematics as well as informations
and communication technology took the challenge. We selected nine students for the
NWERC, forming three teams.

At the NWERC in Linkoping, the best FAU team finished second and like the winning
team from Denmark also managed to solve nine problems. Thus, FAU is the only Ger-
man university that qualified for the upcoming World Finals in Morocco 2015. The other
two FAU teams also did a great job. They solved six problems and finished on rank 17
and 24 of an total of 96 teams.

2.7 OpenMP/Java

Project manager:

Prof. Dr. Michael Philippsen
Project participants:

PD Dr. Ronald Veldema
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blal3
Duration: 1.10.2009-1.10.2015

JaMP is an implementation of the well-known OpenMP standard adapted for Ja-
va. JaMP allows one to program, for example, a parallel for loop or a barrier without
resorting to low-level thread programming. For example:

class Test {

...void foo(){

...... /[#omp parallel for
...... for (int i=0;i<N;i++) {
......... ali]=blil+ c[i]

is valid JaMP code. JaMP currently supports all of OpenMP 2.0 with partial support
for 3.0 features, e.g., the collapse clause. JaMP generates pure Java 1.5 code that runs
on every JVM. It also translates parallel for loops to CUDA-enabled graphics cards for
extra speed gains. If a particular loop is not CUDA-able, it is translated to a threaded
version that uses the cores of a typical multi-core machine. JaMP also supports the use of
multiple machines and compute accelerators to solve a single problem. This is achieved

12



by means of two abstraction layers. The lower layer provides abstract compute devices
that wrap around the actual CUDA GPUs, OpenCL GPUs, or multicore CPUs, wherever
they might be in a cluster. The upper layer provides partitioned and replicated arrays.
A partitioned array automatically partitions itself over the abstract compute devices and
takes the individual accelerator speeds into account to achieve an equitable distribution.
The JaMP compiler applies code-analysis to decide which type of abstract array to use
for a specific Java array in the user’s program.

In 2014 we developed a JaMP implementation for Android 4.0. Currently this version
only supports the SIMD construct of OpenMP.

2.8 PATESIA - Parallelization techniques for embedded systems in
automation

Project manager:

Prof. Dr. Michael Philippsen
Project participants:
Dr.-Ing. Stefan Kempf
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blal3
Marius Kamp, M. Sc.

Start: 1.6.2009

Sponsored by:
ESI-Anwendungszentrum
Contact:

Dipl.-Inf. Georg Dotzler
Phone: +49-9131-85-27624
Fax: +49-9131-85-28809
E-Mail: georg.dotzler@fau.de

This project was launched in 2009 to address the refactorization and paralleliza-
tion of applications used in the field of industry automation. These programs are
executed on specially designed embedded systems. This hardware forms an industry
standard and is used worldwide. As multicore-architectures are increasingly used in
embedded systems, existing sequential software must be parallelized for these new
architectures in order to improve performance. As these programs are typically used in
the industrial domain for the control of processes and factory automation they have a
long life cycle. Because of this, the programs often are not being maintained by their
original developers any more. Besides that, a lot of effort was spent to guarantee that
the programs work reliably. For these reasons the software is only extended in a very
reluctant way.

13



Therefore, a migration of these legacy applications to new hardware and a parallelization
cannot be done manually, as it is too error prone. Thus, we need tools that perform these
tasks automatically or aid the developer with the migration and parallelization.

Research on parallelization techniques

We developed a special compiler for the parallelization of existing automation pro-
grams. First, we examined automation applications with respect to automatic paralle-
lizability. We found that it is hard to perform an efficient automatic parallelization with
existing techniques. Therefore this part of the project focuses on two steps to handle this
situation. As first step, we developed a data dependence analysis that identifies potential
critical sections in a parallel program, presents them to the programmer and adds their
protection to the code. We ware able to show that our approach to identify critical sec-
tions finds atomic blocks that closely match the atomic blocks that an expert would add
to the code. Besides that, we showed in 2014 that the impacts on execution times are
negligible if our technique finds atomic blocks that are larger than necessary or that are
not necessary at all.

As second step we have refined and enhanced existing techniques (software transactio-
nal memory (STM) and lock inference) to implement atomic blocks. In our approach,
an atomic block uses STM as long as lock inference would lead to coarse-grained syn-
chronization. The atomic block switches from STM to lock inference as soon as a fine-
grained synchronization is possible. With this technique, an atomic block always uses
fine-grained synchronization while the runtime overhead of STM is minimized at the sa-
me time. We showed that (compared to a pure STM or lock inference implementation)
our technique speeds up execution times by a factor between 1.1 and 6.3. Although fine-
grained synchronization in general leads to better performance than a coarse-grained so-
lution, there are cases where a coarse-grained implementation shows equal performance.
We therefore presented a runtime mechanism for an STM that also works together with
our combined technique. This runtime mechanism starts with a small number of locks,
1.e., a coarse-grained locking, where accesses to different shared variables are protec-
ted by the same lock. If this coarse-grained locking leads to too many non-conflicting
accesses waiting for the same lock, our approach gradually increases the number of
locks. This makes the locking more fine-grained so that non-conflicting accesses can
be executed concurrently. Our runtime mechanism that dynamically tunes the locking-
granularity makes the programs run up to 3.0 times faster than a fixed coarsegrained
synchronization.

We completed this project part in 2014.
Research on migration techniques

Our research on the migration of legacy applications originally consisted of having a
tool that automatically replaces suboptimal code constructs with better code. The code

14



sequences that had to be replaced as well as the replacement codes were specified by
developers by means of a newly developed pattern description language. However, we
found this approach to be too difficult for novice developers.

This led us to the development of a new tool that automatically learns and generalizes
patterns from source code archives, recognizes them in other projects, and presents re-
commendations to developers. The foundation of our tool lies in the comparison of two
versions of the same program. It extracts the changes that were made between two sour-
ce codes, derives generalized patterns of suboptimal and better code from these changes,
and saves the patterns in a database. Our tool then uses these patterns to suggest similar
changes for the source code of different programs.

In 2014 we developed a new symbolic code execution engine to minimize the number
of wrong recommendations. Depending on the number and the generality of the patterns
in the database, it is possible that without the new engine our tool generates some un-
fitting recommendations. To discard the unfitting ones, we compare the summary of the
semantics/behavior of the recommendation with summary of the semantics/behavior of
the database pattern. If both differ too severely, our tool drops the recommendation from
the results. The distinctive features of our approach are its applicability to isolated code
fragments and its automatic configuration that does not require any human interaction.

The latest results of our tool SIFE are found here? (last update: 2014-05-09).

Parts of the project are funded by the “ESI-Anwendungszentrum’™>

2.9 Software Project Control Center

Project manager:

Prof. Dr. Michael Philippsen
Project participants:

Dr.-Ing. Josef Adersberger

Norbert Tausch, M. Eng.
Duration: 1.11.2009-31.12.2015
Sponsored by:

Bundesministerium fiir Wirtschaft und Technologie
Contact:

Prof. Dr. Michael Philippsen
Phone: +49-9131-85-27625

Fax: +49-9131-85-28809

E-Mail: michael.philippsen @fau.de

ZURL: https://www?2.cs.fau.de/staff/dotzler/SIFE results.tar.gz
3URL: http://www.esi-anwendungszentrum.de/.

15



Prototypical implementation of a new tool for quality assurance during soft-
ware development

Modern software systems are getting increasingly complex with respect to functional,
technical and organizational aspects. Thus, both the number of requirements per system
and the degree of their interconnectivity constantly increase. Furthermore the technical
parameters, e.g., for distribution and reliability are getting more complex and software
is developed by teams that are not only spread around the globe but also suffer from in-
creasing time pressure. Due to this, the functional, technical, and organizational control
of software development projects is getting more difficult.

The ”Software Project Control Center” is a tool that helps the project leader, the software
architect, the requirements engineer, or the head of development. Its purpose is to make
all aspects of the development process transparent and thus to allow for better project
control. To achieve transparence, the tool distills and gathers properties from all artifacts
and correlations between them. It presents/visualizes this information in a way suitable
for the individual needs of the users.

The Software Project Control Center unifies the access to relations between artifacts
(traceability) and to their properties (metrics) within software development projects.
Thus, their efficiency can be significantly increased. The artifacts, their relations, and
related metrics are gathered and integrated in a central data store. This data can be
analyzed and visualized, metrics can be computed, and rules can be checked.

For the Software Project Control Center project we cooperate with the QAware GmbH,
Munich. The AIF ZIM program of the German Federal Ministry of Economics and
Technology funded the first 30 months of the project.

The Software Project Control Center is divided into two subsystems: The integration
pipeline that gathers traceability data and metrics from a variety of software engineering
tools, and the analysis core, that allows to analyze the integrated data in a holistic way.
Each subsystem is developed in a separate subproject.

The project partner QAware GmbH implements the integration pipeline. The first step
was to define TraceML, a modeling language for traceability information in conjunction
with metrics. The language contains a meta-model and a model library. TraceML allows
to define customized traceability models in an efficient way. The integration pipeline is
realized using TraceML as lingua franca in all processing steps: From the extraction
of traceability information to its transformation and integrated representation. We used
the Eclipse Modeling Framework to define the TraceML models on each meta-model
level. Furthermore, we use the Modeling Workflow Engine for model transformations
and Eclipse CDO as our model repository. A set of wide-spread tools for software en-
gineering are connected to the integration pipeline including Subversion, Eclipse, Jira,
Enterprise Architect and Maven.

16



The main research contribution of our group to this project is the analysis core, i.e., the
design and implementation of a domain-specific language for graph-based traceability
analysis. Our Traceability Query Language (TracQL) significantly reduces the effort
that is necessary to implement traceability analyses. This is crucial for both industry
and the research community as lack of expressiveness and inefficient runtimes of other
known approaches hinder the implementation of traceability analysis. TracQL eases not
only the extraction, but also the analysis of traceability data using graph traversals that
are denoted in a concise functional programming style. The language itself is built on
top of Scala, a multi-paradigm programming language, and was successfully applied to
several real-world industrial projects.

In 2014, we improved the modularity of the language to make it both more adaptable
and extendable in terms of structure and operations. This not only increases its expres-
siveness but also improves the reusability of existing traceability analyses.

2.10 Compiler-supported parallelization for multi-core architectu-
res

Project manager:

Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Tobias Werth
Start: 1.3.2007

Contact:

Dipl.-Inf. Tobias Werth
Phone: +49-9131-85-28865
Fax: +49-9131-85-28809
E-Mail: tobias.werth@fau.de

Several issues significantly retard the development of quicker and more efficient
computer architectures. Traditional technologies can no longer contribute to offer
more hardware speed. Basic problems are the divergent ratio of the latencies of
memory access and CPU speeds as well as the heat and waste of energy caused by
increasing clock rates. Homogeneous and heterogeneous multi-core and many-core
architectures were presented as a possible answer and offer enormous performance to
the programmer. The multi-level cache hierarchy and decreased clock rates help avoid
most of the above problems. Potentially, performance can increase even further by
specialization of some hardware components. Current target architectures are GPUs
with hundreds of arithmetic units and the Intel XeonPhi processor that provides 60 and
more cores including hyper threading on a single board.

17



While data parallel problems can be relatively simple accelerated by using the new hard-
ware architectures, the implementation of task parallel problems is our main research
focus. The difficulty is often the irregularity of the resulting task tree and thus the diffe-
rent task run times. From the point of view of a programming systems research group,
there are - among others - the following open questions: Which core executes which
work packet in which order? When do you donate a work packet from one compute no-
de to another? Which data belongs to a work packet, are multiple cores/compute nodes
allowed to access the data simultaneously? How do we have to merge data from mul-
tiple compute nodes? How can a compiler together with a runtime system create tasks
and distribute work packets?

In 2011, we have implemented and extended the Cilk programming model for the he-
terogeneous CellBE architecture (one PowerPC core (PPU) with eight SPU “coproces-
sors”). The CellBE architecture offers an enormous computing potential on a single
chip. To move a work packet in the heterogeneous architecture, we have extended the
Cilk programming model by an extra keyword. A source to source transformation then
creates code for both, the PPU and SPU cores. Furthermore, we have moved the da-
ta along with the work packets in the SPU local stores and used a garbage collection
technique to free memory from remote SPUs later.

In 2012, we focused on graphic cards (GPUs) as a second target architecture. GPUs
offer a lot more performance than ordinary CPUs, however achieving peak performance
may be difficult. For data parallel problems, the performance can be achieved using
Cuda (NVidia) or OpenCL (AMD) relatively easy. However, it is much more difficult
to port task parallel problems with reasonable performance to the GPU, which is one
of the goals on our roadmap. Thus, we design, implement and compare various load
balancing algorithms. In 2012 we designed a first approach with hierarchical queues
under the principle of work donation.

In 2013, while further developing the load balancing algorithms for the GPU, we also
targeted our work towards the Intel XeonPhi processor. With its many-core architecture
and large register sets (and thus the ability to issue vector instructions on multiple data),
the XeonPhi processor is a new challenge for load balancing algorithms. In practice,
we extended and adopted Cilk for the XeonPhi such that we can automatically merge
functions during the source-to-source transformation. This increases the Intel compiler’s
chances to automatically parallelize. We implemented several analyses that not only
increase the number of candidate functions for merging but also avoid (or at least handle)
divergence in those merged functions.

In 2014, we have extended our existing implementation for XeonPhi processors in a
way that we can distribute the work over multiple XeonPhi processors. In contrast to the
technique of work stealing that is used to distribute work over the many cores of a single
XeonPhi, we use work donation to distribute the work to other XeonPhi processors.

18



With a new source code annotation it is possible to mark the necessary data ranges for
a work packet. These data ranges are then distributed along with the work packet and
merged at synchronization points, which was the main challenge of the implementation.
Furthermore, we have started to extend the clang compiler of the LLVM framework with
support for Cilk in order to automatically generate CUDA code for execution on GPUs.
Along with the generated CUDA code, we have designed a lightweight but general
runtime system that manages execution and execution order of the work packets. We
plan to implement analyses to avoid execution divergence as much as possible.

2.11 WEMUCS - Techniques and tools for iterative development
and optimization of software for embedded multicore systems

Project manager:

Prof. Dr. Michael Philippsen
Project participants:

Demian Kellermann, M. Sc.
Dr.-Ing. Norbert Oster

PD Dr. Ronald Veldema
Duration: 15.10.2012-30.11.2014
Sponsored by:

IuK Bayern

Contact:

Prof. Dr. Michael Philippsen
Phone: +49-9131-85-27625

Fax: +49-9131-85-28809

E-Mail: michael.philippsen @fau.de

Multicore processors are of rising importance in embedded systems as these pro-
cessors offer high performance while maintaining low power consumption. Developing
parallel software for these platforms poses new challenges for many industrial sectors
because established tools and software libraries are not multicore enabled. The efficient
development, optimization and testing of multicore-software is still open research,
especially for reliable real-time embedded systems.

In the multi-partner project WEMUCS* new methods and tools for efficient iterative
development, optimization, and testing of multicore software have been created over
the past two years. Innovative tools and technologies for modeling, simulation, visuali-
zation, tracing, and testing have been developed and integrated into a single tool chain.

4URL: http://www.multicore-tools.de/

19



Using case studies from different industries (automotive, telecommunications, industry
automation) these tools were evaluated and improved.

Although several well-known methods for test case generation and best practice covera-
ge measures for classical single-core applications exist, no such methods for multi-core
software have established themselves yet. Unfortunately, it is the interaction of concur-
rent threads that can cause faults that cannot be discovered by testing the individual
threads in isolation. As part of the WEMUCS project (more precisely: work package
AP3° ) and based on an industrial size case study, we developed a generic technique
(called a ’testing pipeline” below) that systematically creates test cases to find and ana-
lyze the impact of concurrent side effects.

To evaluate the new testing pipeline (including the automated parallelization of sequen-
tial code) on real world examples, our project partner Siemens created a complete model
of a large luggage conveyor belt, including the code to control the belt. Such a luggage
conveyor can be found at every airport. The case study’s model is used to automatical-
ly derive luggage conveyor belt systems of different sizes, i.e., built from an arbitrary
number of feeder or outlet belts. The hardware of the conveyor belt is emulated on the
SIMIT simulation tool from Siemens and the control software (written in the program-
ming language AWL) runs on a software-based PLC.

The first step of the testing pipeline converts the AWL code into a more comprehensi-
ble and human-readable programming language called HLL. We have completed this
converter during this reporting period. In step two, our tool then transforms previously
sequential parts of the AWL code into HLL units that are executed in parallel. When
applied to a luggage conveyor belt system built from eight feeders, eight outlets and
an inteconnecting circular belt of straight and curved segments, our tool automatically
transcoded 11.704 lines of sequential AWL code into 34 KB of parallel HLL code.

In step three another tool developed by the chair then analyzes the HLL code and auto-
matically generates a testing model. This model represents the interprocedural control
flow of the concurrent subroutines and also holds all the thread switches that might be
relevant for testing. The testing model consists of a set of hierarchically organized UML
activities (currently encoded as an XMI document that can be imported into Enterpri-
se Architect by Sparx Systems). When applied to the case study outlined above, our
tool automatically generates 103 UML activity diagrams (with 1,302 nodes and 2,581
edges).

Step four is optional. The tester can manually adapt the testing model as needed (e.g.
by changing priorities or inserting additional verification points). Then the completed
model can be loaded into the MBTsuite tool, a model-based testing tool developed by
our project partner sepp.med GmbH. This tool is highly configurable to generate test

SURL: http://www.multicore-tools.de/de/test.html

20



cases that cover as many parts of the testing model as possible. We ran MBTsuite on
a standard PC and applied it to the testing model of our case study; within six minutes
MBTSuite generated a highly optimized test set consisting of only 10 test cases that
nevertheless cover 99of the edges.

In cooperation with our project partner sepp.med GmbH we built two export modules
for the above-mentioned MBTsuite. One module outputs the generated test cases as a
human-readable spreadsheet, the other module outputs an executable test set in the Java
language. The exported spreadsheet contains one individual sheet per test case, with one
column per thread. The rows visualize the thread interleaving that gets tested. The Java
file holds a Java class with a test method per test case. Every method holds a sequence of
test steps that discretely control thread interleavings. This way, each test case execution
leads to a unique and reproducible execution of the parallel System Under Test (SUT)
written in HLL. Each run of a test instructs our HLL emulator to load and initialize the
SUT and each subsequent test step instructs the HLL emulator to execute a certain set
of instructions from a certain thread. During this fully controlled execution, each test
case emits a detailed protocol of its execution for the final visualization step.

A plug-in from sepp.med that creates a visualization layer in Enterprise Architect’s
UML editor visualizes the resulting log file. Colored nodes and edges tell the user which
control flow paths a test has covered. If a test case “fails” (if a race condition or a logic
error is found in the tested program), its graphical trace ends at the failing statement. The
tester can then follow the control flow back in time in order to understand the underlying
reason for the failure.

We have implemented a prototype of the full testing pipeline and demonstrated its ap-
plicability to an industrial size case study. This tool is a major contribution to testing
concurrent code for embedded systems. It is a contribution of the Programming Sys-
tems Group to the EST initiative®.

SURL: http://www.esi-anwendungszentrum.de

21



3

Publications 2014

Al-Hilank, Samir ; Jung, Martin ; Kips, Detlef ; Husemann, Dirk ; Philippsen,
Michael: Using Multi Level-Modeling Techniques for Managing Mapping Infor-
mation . In: ACM/IEEE (Ed.) : Proceedings of the 1st Int. Workshop on Multi-
Level Modelling, ACM/IEEE 17th International Conference on Model Driven En-
gineering Languages and Systems (1st Int. Workshop on Multi-Level Modelling,
ACM/IEEE 17th International Conference on Model Driven Engineering Langua-
ges and Systems Valencia, Spain Sept. 28 - Oct. 3). Aachen : CEUR-WS, 2014,
pp 103-112. (CEUR Workshop Proceedings Vol. 1286)

Brinkers, Daniel ; Philippsen, Michael ; Veldema, Ronald: Simultaneous inspec-
tion: Hiding the overhead of inspector-executor style dynamic parallelization .
In: Springer (Ed.) : Proceedings of the International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2014) (International Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC 2014) Hillsboro, OR, USA
15.-17.09.2014). 2014, pp -.

Kempf, Stefan ; Veldema, Ronald ; Philippsen, Michael: Combining Lock In-
ference with Lock-Based Software Transactional Memory . In: Cascaval, Calin
; Montesinos, Pablo (Ed.) : Proceedings of the 26th International Workshop on
Languages and Compilers for Parallel Computing (LCPC 2013) (26th Interna-
tional Workshop on Languages and Compilers for Parallel Computing (LCPC
2013) Santa Clara, California, USA 25.-27.09.2013). Berlin : Springer-Verlag
Berlin Heidelberg, 2014, pp 325-341. (Lecture Notes in Computer Science (LN-
CS) Vol. 8664) - ISBN 978-3-319-09966-8

Kempf, Stefan: Compiler and Runtime Techniques to Identify and Optimize Ato-
mic Blocks in Parallel Programs . Gottingen : Cuvillier Verlag, 2014. Zugl.: Er-
langen, Friedrich-Alexander-Universitit Erlangen-Niirnberg, Ph.D. thesis, 2014.
- 161 pages.

Lautenschlager, Florian ; Adersberger, Josef ; Kumlehn, Andreas ; Philippsen, Mi-
chael: Design for Diagnosability . In: Java Magazin (Software-&-Support-Verlag,
Frankfurt am Main) (2014), No. 5, pp 44-50, ISSN 1619-795X

Mutschler, Christopher ; Philippsen, Michael: Adaptive Speculative Processing
of Out-of-Order Event Streams . In: ACM Transactions on Internet Technology
(TOIT) 14 (2014), No. 1, pp 4:1-4:24, ISSN 1557-6051

Mutschler, Christopher: Latency Minimization of Order-Preserving Distribu-
ted Event-Based Systems . Miinchen : Verlag Dr. Hut, 2014. Zugl.: Erlangen,
Friedrich-Alexander-Universitéit Erlangen-Niirnberg, Ph.D. thesis, 2014. - 229 pa-

ges. ISBN 978-3-8439-1472-7 =



4

Mutschler, Christopher ; Loeffler, Christoffer ; Witt, Nicolas ; EdelhduBer, Thors-
ten ; Philippsen, Michael: Predictive Load Management in Smart Grid Environ-
ments (Best Paper Award) . In: ACM (Ed.) : Proceedings of the 8th ACM In-
ternational Conference on Distributed Event-Based Systems (8th ACM Interna-
tional Conference on Distributed Event-Based Systems Mumbai, India 26.05. -

29.05.2013). 2014, pp 282-287. - ISBN 978-1-4503-2737-4

Tausch, Norbert ; Philippsen, Michael: A Modular and Statically Typed Effect-
ful Stack for Custom Graph Traversals . In: Tichy, Matthias ; Westfechtel, Bern-
hard (Ed.) : Proceedings of the 8th International Workshop on Graph-Based Tools
(GraBaTs 2014) (8th International Workshop on Graph-Based Tools (GraBaTs
2014) York, UK 25.07.2014). 2014, pp -. (Electronic Communications of the
EASST, No. 68)

Exam theses (german only)

Bachelor Thesis: Vectorization of recursive parallel programs. Bearbeiter: Patrick
Kreutzer (beendet am 31.01.2014); Betreuer: Dipl.-Inf. Tobias Werth; Prof. Dr.
Michael Philippsen

Bachelor Thesis: Entwurf und Realisierung einer Programmierschnittstelle zur
Software-Diagnose basierend auf aspekt-orientierten Paradigmen. Bearbeiter:
Pascal Wagner (beendet am 04.04.2014); Betreuer: Andreas Kumlehn, M. Sc.;
Prof. Dr. Michael Philippsen

Bachelor Thesis: Abbildung der LLVM-Zwischensprache (Bitcode) auf die
Zwischensprache des LS2-Programmanalyse-Frameworks.. Bearbeiter: Andreas
Griinwald (beendet am 08.09.2014); Betreuer: Dipl.-Inf. Thorsten Blaf3; PD Dr.
Ronald Veldema; Prof. Dr. Michael Philippsen

Master Thesis: Entwicklung eines Werkzeugs zum Vergleich von Code-
Fragmenten durch symbolische Ausfiihrung. Bearbeiter: Marius Kamp (beendet
am 01.10.2014); Betreuer: Dipl.-Inf. Georg Dotzler; Prof. Dr. Michael Philippsen

Bachelor Thesis: Integration of new SIMD-Features into the Android Dalvik VM.
Bearbeiter: Christian Cardello (beendet am 02.10.2014); Betreuer: Dipl.-Inf. Ge-
org Dotzler; PD Dr. Ronald Veldema; Prof. Dr. Michael Philippsen

Bachelor Thesis: Entwurf und Umsetzung einer Bibliothek zur automatisierten
Analyse von Zeitreihen im Umfeld der Software-Diagnose. Bearbeiter: Marc Ro-
senbauer (beendet am 30.10.2014); Betreuer: Andreas Kumlehn, M. Sc.; Prof. Dr.
Michael Philippsen

23



Master Thesis: Optimierungen fiir ein CUDA-basiertes JavaScript-System. Bear-
beiter: Eugen Meissner (beendet am 01.11.2014); Betreuer: PD Dr. Ronald Vel-
dema; Prof. Dr. Michael Philippsen

Bachelor Thesis: Realisierung eines Serialisierungsmechanismus fiir tiefe Model-
le. Bearbeiter: Florian Gerdes (beendet am 1.11.2014); Betreuer: Dipl.-Inf. Samir
Al-Hilank; Dr.-Ing. Martin Jung; Hon.-Prof. Dr.-Ing. Detlef Kips

Bachelor Thesis: Synchronisationsfreie Graphstruktur auf der GPU. Bearbeiter:
Daniel Wust (beendet am 6.11.2014); Betreuer: Dipl.-Inf. Thorsten Bla; PD Dr.
Ronald Veldema; Prof. Dr. Michael Philippsen

Bachelor Thesis: CudaMPI: Nachrichtenaustausch zwischen Rechnerknoten iiber
Cuda und MPI. Bearbeiter: Matthias Huth (beendet am 10.11.2014); Betreuer: PD
Dr. Ronald Veldema; Prof. Dr. Michael Philippsen

Bachelor Thesis: Berichtgenerierung fiir tiefe Modelle. Bearbeiter: Valerie Wie-
demann (beendet am 17.11.2014); Betreuer: Dipl.-Inf. Samir Al-Hilank; Dr.-Ing.
Martin Jung; Hon.-Prof. Dr.-Ing. Detlef Kips

Bachelor Thesis: Entwurf und Implementierung einer Lastverteilung auf meh-
rere XeonPhi-Prozessoren im Cluster. Bearbeiter: Christian Eichler (beendet am
18.11.2014); Betreuer: Dipl.-Inf. Tobias Werth; Prof. Dr. Michael Philippsen

Bachelor Thesis: Measurement and Analysis of Runtime-Metrics in a Continuous
Integration Environment. Bearbeiter: Victor Simon (beendet am 25.11.2014); Be-
treuer: Andreas Kumlehn, M. Sc.; Prof. Dr. Michael Philippsen

Master Thesis: Entwurf und Evaluation eines Ansatzes zur approximativen Ereig-
nisverarbeitung auf Sensordatenstromen. Bearbeiter: Christoffer Loffler (beendet
am 1.12.2014); Betreuer: Dr.-Ing. Christopher Mutschler; Prof. Dr. Michael Phil-
ippsen

24



	Focus of research
	Research projects
	Design for Diagnosability
	Efficient Software Architectures for Distributed Event Processing Systems
	Embedded Systems Institute
	ErLaDeF - Embedded Realtime Language Development Framework
	Graphs and Graph Transformations
	International Collegiate Programming Contest at the FAU
	OpenMP/Java
	PATESIA - Parallelization techniques for embedded systems in automation
	Software Project Control Center
	Compiler-supported parallelization for multi-core architectures
	WEMUCS - Techniques and tools for iterative development and optimization of software for embedded multicore systems

	Publications 2014
	Exam theses (german only)

