
Annual Report of the Chair of Computer Science 2
(Programming Systems)

Address: Martensstr. 3, 91058 Erlangen
Phone: +49-9131-85-27621
Fax: +49-9131-85-28809
E-Mail : info@i2.informatik.uni-erlangen.de

Ordinarius :
Prof. Dr. Michael Philippsen
Honorary Professor:
Hon.-Prof. Dr.-Ing. Bernd Hindel
Hon.-Prof. Dr.-Ing. Detlef Kips
Professor Emeritus:
Prof. em. Dr. Hans J̈urgen Schneider
Secretary:
Margit Zenk (from May 1, 2013)
Scientific Staff:
Dipl.-Inf. Thorsten Blaß
Dipl.-Inf. Daniel Brinkers
Dipl.-Inf. Georg Dotzler
Demian Kellermann, M. Sc. (from April 1, 2013)
Dipl.-Inf. Stefan Kempf
Dipl.-Math. Jakob Krainz
Andreas Kumlehn, M. Sc.
Dipl.-Inf. Christopher Mutschler
Dr.-Ing. Norbert Oster
Dipl.-Inf. Mykola Protsenko (from May 15, 2013)
Norbert Tausch, M. Eng.
PD Dr. Ronald Veldema
Dipl.-Inf. Tobias Werth
Guest:
Dr.-Ing. Josef Adersberger
Dipl.-Inf. Samir Al-Hilank
Dipl.-Inf. Ralf Ellner
Dr.-Ing. Martin Jung
Florian Lautenschlager, M. Sc.
Dr.-Ing. Stephan Otto
External Teaching Staff:
Dr.-Ing. Klaudia Dussa-Zieger
Dr.-Ing. Martin Jung
Dr.-Ing. Stephan Otto

1

The Chair of Computer Science 2 (programming systems) was founded in 1972
and is headed by Prof. Michael Philippsen (as the successor of Prof. H.-J. Schneider)
since April 2002. Closely associated with the programming systems group is the
professorship for Didactics of Computer Science.

1 Focus of research

The main research topics in the programming systems group are programming of paral-
lel or distributed systems and programming of embedded or mobile systems. Software
(and its development) for such systems should ideally be as complex, portable, main-
tainable and robust as existing software for single core systems and workstations. It is
our long-term goal to allow applications to take full advantage of the available compu-
ting and network power. A particular focus lies on programming systems for multi-cores
because more and more cheap multi-core high-performance parallel hardware (for ex-
ample graphics cards or FPA-Hardware) is available. This will have an unpredictable
impact on the future of the software landscape. Research results of the group are always
evaluated by means of prototypes and demonstrators.

Important Research Areas

• Exploit the available parallelization potential. In the future the clock rate of
multi-core systems will grow only slowly whereas the numberof cores will grow.
This makes it necessary to exploit the parallelization potential of already older,
existing software to allow it to benefit from the new hardware. As a consequence,
in most application areas a change to parallel computing is unavoidable. There-
fore, the programming systems group develops tools to support the programmer
interactively in reengineering existing sequential applications. It also develops ar-
chitectural patterns for new software projects that scale automatically to support
a growing number of cores.

• Achieve portability in high-performance applications. Up to the present, app-
lication programmers achieve the best possible performance results only if they
handle latency issues and communications between different components of the
system manually, optimize their code with hardware specific”tricks” and split
their application into multiple sections to outsource themto other hardware
(for example graphics cards). To change this situation, theprogramming sys-
tems group researches the performance impact of higher programming abstrac-
tion layers that would improve programming productivity and software portabi-
lity. The improvements are caused by generated code that allows the distribution

2

of the program onto multiple heterogeneous system components to permit par-
allel execution. The higher abstraction layer makes the communication between
the components transparent for the developer. To increase the efficiency of this
approach it is necessary to give the programmer the possibility to express availa-
ble domain knowledge in the programming language. For the higher abstraction
layer, the details of the hardware architecture are hidden from the developer (for
example by library functions or programming language extensions).

• Adapt the degree of parallelism dynamically. High-performance applications
are often developed for a fixed number of cores. As requested cluster nodes of a
batch system are statically assigned for a fixed time period,inefficient reservation
gaps are unavoidable. Similar problems appear in multi-threaded applications on
multi-core systems. The programming systems group works onthe dynamic ad-
aptation of the extent of parallelism by the means of code transformations (under
consideration of the resulting data redistribution) and operating system interacti-
ons. As control flow based synchronization measures interfere with the necessa-
ry analyzes, the programming systems group researches new programming con-
structs that can replace the existing ones and allow to specify the synchronization
in a data-centric way.

• Develop Testing for Parallelism. In software engineering, testing has always
assumed an important role. Code coverage, test data generation, reliability as-
sessment etc. are tools of the trade. Unfortunately, current research insufficiently
covers the indeterminism caused by concurrency. To deal with that issue, the pro-
gramming systems group develops tools that consider (basedon the coverage cri-
teria) interleavings of parallel threads in their test datageneration. This topic also
includes research on operating systems and schedulers. As concurrency consi-
derably increases the search space of the test generation itis necessary to develop
infrastructures that allow the test generation and execution on a cluster.

• Improve of Software Development Processes. The current development practi-
ce of complex, business or security critical software in global distributed teams
(commonly found in the software industry) demands compliance with well-
defined software development processes. To support the enforcement of this re-
quirement, appropriate development tools are used. The Practical Software Engi-
neering research group that is lead by the honorary professors Dr. Bernd Hindel
and Dr. Detlef Kips cover the corresponding research area. Both possess long term
experience in industrial software projects as managers of medium sized software
companies. The goal of the Practical Software Engineering group is the develop-
ment of a machine executable notation for modeling of software development pro-
cesses. For that purpose the research group examines the semi-automatic retrieval

3

of traceability information from the artefacts of different tools and notations as
well as the model based development, integration and configurations of software
components, used in the design of automotive embedded systems.

2 Research projects

2.1 Design for Diagnosability

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Andreas Kumlehn, M. Sc.
Dr.-Ing. Josef Adersberger
Florian Lautenschlager, M. Sc.
Start: 15.5.2013
Sponsored by:
IuK Bayern
Contact:
Prof. Dr. Michael Philippsen
Phone: +49-9131-85-27625
Fax: +49-9131-85-28809
E-Mail: michael.philippsen@fau.de

Many software systems behave obtrusively during the test phase or even in nor-
mal operation. The diagnosis and the therapy of such runtimeanomalies is often time
consuming and complex - up to being impossible. There are several possible conse-
quences for using the software system: long response times,inexplicable behaviors, and
crashes. The longer the consequences remain unresolved, the higher is the accumulated
economic damage.

”Design for Diagnosability” is a tool chain targeted towards increasing the diagnosabi-
lity of software systems. By using the tool chain that consists of modeling languages,
components, and tools, runtime anomalies can easily be identified and solved - ideally
already while developing the software system. Our cooperation partner QAware GmbH
offers a tool called Software EKG that enables developers toexplore runtime metrics of
software systems by visualizing them as time series.

The research project Design for Diagnosability enhances the existing Software EKG.
A so-called Software Black Box measures technical and functional runtime values of
a software system in a minimally intrusive way. FindPerformanceBugs automatically

4

detects runtime anomalies. The link between the observed software system and the de-
veloped tool chain is the Performance Modeling Language (PML), a modeling language
for performance relevant properties of a software system. The PML is used for the data
collection in the Software Black Box. Additionally, the PML isthe information base for
the Runtime Anomaly Diagnosis Language (RADL) that describesrules to automatical-
ly detect runtime anomalies in the observed software system.

2.2 Efficient Software Architectures for Distributed Event Proces-
sing Systems

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Christopher Mutschler
Duration: 15.11.2010–15.5.2014
Sponsored by:
Fraunhofer Institut f̈ur Integrierte Schaltungen

Localization Systems (also known as Realtime Location Systems, or RTLS) be-
come more and more popular in industry sectors such as logistics, automation, and
many more. These systems provide valuable information about whereabouts of objects
at runtime. Therefore, processes can be traced, analyzed and optimized. Besides the
research activities at the core of localization systems (like resilience and interference-
free location technologies or methods for highly accurate positioning), algorithms and
techniques emerge that identify meaningful information for further processing steps.
We focus our research on automatic configuration methods forRTLSs as well as on the
generation of dynamic moving models and techniques for event processing on position
streams at runtime.

In 2011, we investigated whether events can be predicted after analyzing and learning
event streams from the localization system at runtime. As a result, we are able to deduce
models that represent the information buried in the event stream to predict future events.

We developed several methods and techniques in 2012 that process and detect events
with low latency. Events (composite, complex) can be detected by means of a hierarchi-
cal aggregation of sub-events that themselves are detectedby (several) event detectors
processing sub-information in the event stream. This greatly reduces the complexity of
the detection components and renders them fully maintainable. They even can use par-
allel or distributed cluster architectures more efficiently so that important events can be
detected within a few milliseconds.

5

In 2013 we designed methods to further minimize detection latency in distributed event-
based systems. A new migration technique modifies and optimizes the allocation of
software components in a networked environment at runtime to minimize networking
overhead and detection latencies. In addition we developeda speculative event proces-
sing technique that wraps conservative buffering techniques to exploit available system
resources. As all the available resources can now be used to process events earlier de-
tection latencies further shrink. We also created a representative data set (consisting of
realtime position data and event streams) and a corresponding task description for the
ACM DEBS Grand Challenge at the 7th Intl. Conf. on Distributed Event-Based System.

The project is a contribution of the Programming Systems Group to the [IZ
ESI]http://www.esi.uni-erlangen.de/

2.3 Embedded Systems Institute

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Stefan Kempf
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blaß
Dipl.-Inf. Tobias Werth
Dipl.-Inf. Christopher Mutschler
Andreas Kumlehn, M. Sc.
Dr.-Ing. Norbert Oster
Demian Kellermann, M. Sc.
Start: 1.9.2007

In September 2007 the ESI – Embedded System Institute – was founded as an
interdisciplinary center at the Friedrich-Alexander-University (FAU) with the goal
to coordinate and organize research, teaching, and furthereducation in the field of
embedded systems.

ESI brings together existing skills within the university and interests, activities, and
goals of large and medium sized companies in the field of embedded systems.

Companies obtain access to latest research results and the opportunity to develop com-
mon projects, to establish ties, and to find co-operation partners. The ESI concentrates
the skills of the chairs of computer sciences and makes them usable for co-operation
projects. Hence, the latest research results can be transferred into products in a spee-
dy way. Finally, the ESI may serve as a platform for recruiting excellent students and
highly qualified young academics at an early stage.

6

The chair of computer science department 2 (Prof. Philippsen) is one of the active foun-
ders of the ESI and carries out research projects within the ESI.

More information can be found at http://www.esi.uni-erlangen.de and http://www.esi-
anwendungszentrum.de

2.4 ErLaDeF - Embedded Realtime Language Development Fra-
mework

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
PD Dr. Ronald Veldema
Dipl.-Inf. Thorsten Blaß
Dipl.-Math. Jakob Krainz
Dipl.-Inf. Daniel Brinkers
Start: 1.1.2012
Contact:
PD Dr. Ronald Veldema
Phone: +49-9131-85-27622
Fax: +49-9131-85-28809
E-Mail: ronald.veldema@fau.de

ErLaDeF is our test-bed for new programming language and compiler techni-
ques. Our main focus is on building infrastructure for easier (hard + soft) real-time
embedded parallel systems programming.

We focus on hard real-time embedded systems as they are aboutto go massively parallel
in the near future.

Real-time and embedded systems also have hard constraints onresource usage. For
example, a task should complete in a fixed amount of time, haveguaranteed upper-limits
on the amount of memory used, etc.

We are developing different ways to manage this concurrencyusing a combination of
strategies: simpler language features, automatic parallelization, libraries of parallel pro-
gramming patterns, deep compiler analysis, model checking, and making compiler ana-
lysis fast enough for interactive use.

Parallelization through Language Features

Using simpler language features (compared to, for example,Java or C#) ensures that
the compiler analysis finds the existing concurrency and real-time violation bugs. This

7

forms a basis of the other techniques we pursue in this project. In 2013 we have explored
alternatives to polymorphism and inheritance that may be easier to analyze. We have
also examined alternative thread synchronization methods, for example transactional
memory, implicit synchronization, remote procedure calls, etc.

Runtime Parallelization of Programs

Our automatic parallelization efforts are currently focused on dynamic parallelization.
While a program is running, it is analyzed to find loops where parallelization can help
performance. Our current idea is to run long-running loops three times. The first two
runs analyze the memory accesses of the loop and can both run in parallel. The first
run stores in a shared data structure for every memory address in which loop iteration a
write access happens. We do not need any synchronization forthis data structure, only
the guarantee that one value is written to memory, when two concurrent writes happen.
In the second pass we check for every memory access, if it has adependency to one of
the stored write accesses. A write access is part of any data-dependency, so we can find
all types of data dependencies. If we do not find any, the loop is actually run in parallel.
If we find dependencies, the loop is executed sequentially. We can execute the analyses
in parallel to a modified sequential execution of the first loop iterations.

In 2013 we refined the analyses by exploiting that the sequential execution of the first
iterations will happen before the parallel execution of theremaining iterations. By over-
lapping some sequential iterations with the analysis of theremainder of the loop, the
analysis does not add (much) overhead in the case that it turns out that the loop cannot
be parallelized after all.

Design Patterns for Parallel Programming

A library of parallel programming patterns allows a programmer to select well known
parallelization and inter-core communication strategiesfrom a well-debugged library.
We are performing research into what (communication) patterns actually exist and when
they can be applied. We have collected over 30 different patterns for parallel commu-
nication. In 2013 we investigated mechanisms to automatically determine the fitting
implementation for a given software and hardware environment. We also added a set of
distributed channels where cores can send data from one local memory to another. The
distributed channels allow the library to be used to programmodern Network-on-Chip
(NoC) processors.

Model Checking

Model checking examines all interleavings of threads to determine if a concurrency bug
can occur. Bugs that a model checker can find are race conditions, deadlocks, etc. A
model checker can guarantee that a bug is found at the cost of long analysis times. In
2013 we made further progress in developing a language independent model checking
framework. The model checker was optimized in two novel waysin 2013. First we

8

discovered that we can reduce the model-checker’s state space by exploiting a program’s
locality. Second we found that by using a data-centric synchronization programming
model we can achieve coarse grained interleaving to reduce the model-checker’s state
space some more.

Interactive Program Analysis

To ensure that program design errors are caught early in the development cycle, it is
necessary to find bugs while editing. This requires that any program analysis works at
interactive speeds. We are following two approaches to this.

The first approach centers around algorithmic changes to program analysis problems.
Making analysis problems lazy means that only those parts ofa program should be
examined that are pertinent to the question that is currently asked by the compiler. For
example, if the compiler needs to know which functions access a certain object, it should
not examine unrelated functions, classes, or packages. Making program analysis incre-
mental means that a small change in the program should only require small work for the
(re-)analysis.

To achieve that, a program is split recursively into parts. Then, for each of the parts, it
is calculated which effect it would have during an executionof the program. For each
part, a symbolic representation of its effects are saved.

These representations can then for one be used to find the errors that occur when two
of the parts interact (concurrently or non-concurrently).Also, we can deduce the effects
that a bigger part of the program has during it’s execution bycombining the effects of
the smaller parts the bigger part consists of. This enables incremental analysis, because
changes in one place do not cause the whole program to be reanalyzed, as the symbolic
representations of the effects of unchanged parts of the program stay unchanged as well.

In 2013 our key focuses were twofold: Firstly, we developed data structures that can
both precisely and efficiently describe the effects of a partof a program. Secondly, we
developed both efficient and precise algorithms to create and use these data structures.

Our second approach to bring compiler analysis to interactive speed is to make the
analysis itself parallel. In 2013 we continued to develop data-parallel formulations of
basic compiler analyses. We have started to implement a generic data-parallel predicate
propagation framework. Its data-parallel forms are then portably executable on many
different multi-core architectures.

The ErLaDeF project is a contribution of the Chair of Computer Science 2 (Pro-
gramming Systems) to the IZ ESI (Embedded Systems Initiative, http://www.esi.uni-
erlangen.de)

9

2.5 Graphs and Graph Transformations

Project manager:
Prof. em. Dr. Hans J̈urgen Schneider
Start: 1.10.2004
Contact:
Prof. em. Dr. Hans J̈urgen Schneider
Phone: +49-9131-85-27620
Fax: +49-9131-85-28809
E-Mail: hans.juergen.schneider@fau.de

Graphs are often used as an intuitive aid for the clarification of complex matters.
Examples of outside computer science include, e.g., chemistry where molecules are
modeled in a graphical way. In computer science, data or control flow charts are often
used as well as entity relationship charts or Petri-nets to visualize software or hardware
architectures. Graph grammars and graph transformations combine ideas from the
fields of graph theory, algebra, logic, and category theory,to formally describe changes
in graphs.

Category theory is an attractive tool for the description of different structures in a uni-
form way, e.g., the different models for asynchronous processes: Petri-Nets are based
on standard labeled graphs, state charts use hierarchical graphs, parallel logic program-
ming can be interpreted in a graph-theoretical way using so-called jungles, and the actor
systems can be visualized as graphs, whose labeling alphabet is a set of term graphs.

Lately, we have concentrated our attention on a theoreticalaspect.

Our work on graph transformation is based on notions borrowed from category theo-
ry. The so-called double-pushout approach represents a production by two morphisms
starting at a common interface graph. One pushout glues the left-hand side of the pro-
duction into the context, the other does with the right-handside. Effectively constructing
a derivation step, however, requires finding a pushout complement on the left-hand si-
de. Some people consider this disadvantageous. In 1984, Raoult has proposed to model
graph rewriting by a single pushout; Loewe has extensively studied this approach, but
the discussion was mainly restricted to injective morphisms. Under this assumption, the
approaches are equivalent. Some relevant applications such as term graph rewriting, ho-
wever, lead to non-injective morphisms. We have examined these cases in detail, and we
could show that the equivalence also holds for non-injective cases as long as the handle
satisfies some reasonable conditions.

10

2.6 International Collegiate Programming Contest at the FAU

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Tobias Werth
Dipl.-Inf. Daniel Brinkers
Dipl.-Math. Jakob Krainz
Start: 1.11.2002
Contact:
Dipl.-Inf. Tobias Werth
Phone: +49-9131-85-28865
Fax: +49-9131-85-28809
E-Mail: tobias.werth@fau.de

The Association for Computing Machinery (ACM) has been hosting the Interna-
tional Collegiate Programming Contest (ICPC) for many years. Teams of three students
try to solve nine to eleven programming problems within five hours. What makes this
task even harder, is that there is only one computer available per team. The problems
demand for solid knowledge of algorithms from all areas of computer science and
mathematics, e.g. graphs, combinatorics, strings, algebra and geometry.

The ICPC consists of three rounds. First, each participatinguniversity hosts a local con-
test to find the three teams that are afterwards competing in one of the various regional
contests. Erlangen lies in the catchment area of the Northwestern European Regional
Contest (NWERC) where also teams from e.g. Great Britain, Benelux and Scandinavia.
The winners of all regionals in the world (and some second place holders) advance to
the world finals in spring of the following year.

In 2013 two local contests took place in Erlangen. During thewinter semester a team
contest was conducted with teams consisting of at most threestudents. The main goal
of this contest was to interest new students in the contests.We had 19 FAU teams plus
30 more teams from universities all over Europe.

As in the previous years, in the summer term the seminar ”Hello World - Programming
for the Advanced” served to prepare students from differentdisciplines in algorithms
and contest problems. In the German-wide contest of the summer term we chose the
students that represent the FAU at the NWERC 2013 in Delft. 14 teams with students
of computer science, computational engineering, mathematics as well as informations
and communication technology took the challenge. We selected ten students for the
NWERC, forming three teams and one reserve. At the NWERC in Delft, the best FAU
team reached a bronze medal by solving seven problems. The second and third team
also did a great job solving only one problem less and finishedon rank 10, 20, and 25
of 92 teams.

11

2.7 InThreaT - Inter-Thread Testing

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dr.-Ing. Norbert Oster
Start: 1.1.2012
Contact:
Dr.-Ing. Norbert Oster
Phone: +49-9131-85-28995
Fax: +49-9131-85-28809
E-Mail: norbert.oster@fau.de

In order to achieve higher computing performance, microprocessor manufacturers
do not try to achieve faster clock speed anymore - on the contrary: the absolute number
of cycles has even decreased, while the number of independent processing units (cores)
per processor is continually increased. Due to this evolution, developers must learn
to think outside the box: The only way to make their applications faster (in terms of
efficiency) is to modularize their programs such that independent sections of code
execute concurrently. Unfortunately, present-day systems have reached a level of
functional complexity, such that even software for sequential execution is significantly
error-prone - the parallelization for multiple cores adds yet another dimension to the
non-functional complexity. Although research in the field of software engineering
emerged several different quality assurance measures, there are still very few effective
methods for testing concurrent applications, as the broad emergence of multi-core
systems is relatively young.

This project aims to fill that gap by providing an automated test system. First of all, a
testing criteria hierarchy is needed, which provides different coverage metrics tightly
tailored to the concept of concurrency. Whilst for example branch coverage for sequen-
tial programs requires the execution of each program branchduring the test (i.e. making
the condition of an if-statements both true and false - even if there is no explicit else
branch), a thorough test completion criterion for concurrent applications must demand
for the systematic execution of all relevant thread interleavings (i.e. all possibly occur-
ring orderings of statements, where two threads may modify ashared memory area).
A testing criterion defines the properties of the ”final” testset only, but does not pro-
vide any support for identifying individual test cases. In contrast to testing sequentially
executed code, test scenarios for parallel applications must also comprise control infor-
mation for deterministically steering the execution of theTUT (Threads Under Test).

In 2012, a framework for Java has been developed, which automatically generates such
control structures for TUT. The tester must provide the bytecode of his application only;

12

further details such as source code or restrictions of the test scenario selection are op-
tional. The approach uses aspect-oriented programming techniques to enclose memory
access statements (reads or writes of variables, responsible for typical race conditions)
with automatically generated advices. After weaving the aspects into the SUT (System
Under Test), variable accesses are intercepted at runtime,the execution of the corre-
sponding thread is halted until the desired test scenario isreached, and the conflicting
threads are reactivated in the order imposed by the given test scenario. In order to de-
monstrate the functionality, some naive sequence control strategies were implemented,
e.g. alternately granting access to shared variables from different threads.

In 2013, the prototypical implementation of the InThreaT framework has been reen-
gineered as an Eclipse plugin. This way, our approach can also be applied in a multi-
project environment and the required functionality integrates seamlessly into the deve-
lopment environment (IDE) familiar to programmers and testers. In addition, the con-
figuration effort required from the tester could be reduced,as e.g. selecting and per-
sisting the interesting points of interleaving also becameintuitively usable parts of the
IDE. In order to automatically explore all relevant interleavings, we need an infrastruc-
ture to enrich functional test cases with control information, required to systematically
(re)execute individual test cases. In 2013, such an approach for JUnit has been evalua-
ted and implemented prototypically, which allows to mark individual test cases or whole
test classes with adequate annotations.

2.8 OpenMP/Java

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
PD Dr. Ronald Veldema
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blaß
Duration: 1.10.2009–1.10.2015

JaMP is an implementation of the well-known OpenMP standardadapted for Ja-
va. JaMP allows one to program, for example, a parallel for loop or a barrier without
resorting to low-level thread programming. For example:

class Test{

...void foo(){

......//#omp parallel for

......for (int i=0;i<N;i++) {

13

.........a[i]= b[i]+ c[i]

......}

...}

}

is valid JaMP code. JaMP currently supports all of OpenMP 2.0with partial support
for 3.0 features, e.g., the collapse clause. JaMP generatespure Java 1.5 code that runs
on every JVM. It also translates parallel for loops to CUDA-enabled graphics cards for
extra speed gains. If a particular loop is not CUDA-able, it istranslated to a threaded
version that uses the cores of a typical multi-core machine.JaMP also supports the use of
multiple machines and compute accelerators to solve a single problem. This is achieved
by means of two abstraction layers. The lower layer providesabstract compute devices
that wrap around the actual CUDA GPUs, OpenCL GPUs, or multicore CPUs, wherever
they might be in a cluster. The upper layer provides partitioned and replicated arrays.
A partitioned array automatically partitions itself over the abstract compute devices and
takes the individual accelerator speeds into account to achieve an equitable distribution.
The JaMP compiler applies code-analysis to decide which type of abstract array to use
for a specific Java array in the user’s program.

In 2013, we examined how to better support Java objects in OpenMP parallel code, re-
gardless of where the code is executed. We found that we needed to restrict the language
slightly by forbidding inheritance of objects used in a parallel block. This ensures that
the objects will not be of a different type than what is seen atcompile time. We use
this property to, for example, allow object inlining into arrays to occur naturally. With
the added inlining, communication of objects and arrays over the network and to the
compute devices was accelerated enormously, including a small performance increase
on the devices themselves.

2.9 PATESIA - Parallelization techniques for embedded systems in
automation

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Stefan Kempf
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blaß
Start: 1.6.2009
Sponsored by:
ESI-Anwendungszentrum

14

Contact:
Dipl.-Inf. Stefan Kempf
Phone: +49-9131-85-27624
Fax: +49-9131-85-28809
E-Mail: stefan.kempf@fau.de

This project was launched in 2009 to address the refactorization and paralleliza-
tion of applications used in the field of automation. The programs are executed on
specially designed embedded systems. This hardware forms an industry standard and
is used worldwide. As multicore-architectures are increasingly used in embedded
systems, existing sequential software must be parallelized for these new architectures
in order to gain an improvement of performance. As these programs are typically used
in the industrial domain for the control of processes and factory automation they have
a long life cycle. Because of this, the programs are often not being maintained by their
original developers any more. Besides that, a lot of effort was spent to guarantee that
the programs work reliably. For these reasons, the softwareis only extended in a very
reluctant way.

Therefore, a migration of these legacy applications to new hardware and a parallelization
cannot be done manually, as it is too error prone. Thus, we need tools that perform these
tasks automatically or aid the developer with the migrationand parallelization.

Research on parallelization techniques

We developed a special compiler for the parallelization of existing automation pro-
grams. First, we examined industry automation applications with respect to automatic
parallelizability. We found that it is hard to perform an efficient automatic parallelizati-
on with existing techniques. Therefore, we shifted our focus to let our compiler generate
feedback about code sequences that are hard to parallelize and leave the final paralleliza-
tion to the developers. However, the proper synchronization of the parallel threads was
performed by the compiler. We used atomic blocks and transactional memory as syn-
chronization techniques and implemented those in a prototypical runtime environment.
In 2013, we developed a new parallelization technique that works well for industry au-
tomation codes. Our new approach uses program slicing and graph coloring to extract
parallel threads of execution from a sequential program. Wedeveloped a graphical tool
that presents the results of the analysis to developers so that they can easily spot those
locations in their codes that prevent a parallelization. This helps programmers to refac-
tor their code in order to improve th results of the analysis.Additionally, we developed
another novel compiler analysis that combines STM and lock inference, which are the
currently two most popular techniques to implement critical sections. Our compiler di-
vides critical sections into distinct sequences of code andfor every sequence, it chooses
the technique that leads to a more fine-grained synchronization. Since lock inference
typically has a lower runtime overhead than STM but often leads to coarse-grained

15

synchronization, we enhanced the former technique with optimizations that now can
implement more critical sections with fine-grained lock inference than was previously
possible.

Research on migration techniques

Our research on the migration of legacy applications originally consisted of having a
tool that automatically replaces suboptimal code constructs with better code. The code
sequences that had to be replaced as well as the replacement codes were specified by
developers by means of a newly developed pattern description language. However, we
found this approach to be too difficult for novice developers.

This led us to the development of a new tool that automatically learns patterns from
source code archives, recognizes them in other projects, and presents recommendati-
ons to developers. The foundation of our tool lies in the comparison of two versions
of the same program. It extracts the changes that were made between two versions,
derives the patterns of suboptimal and better code from these changes, and saves the
patterns in a database. Our tool then uses these patterns to perform similar changes on
the source code of different programs. In 2013 the transformation tool that automati-
cally extracts patterns from version control systems was completed. Our tool continues
to extract changes from software archives, but since the detected changes contained too
much irrelevant low-level information, we added a new preprocessing pass that extracts
high-level information from these changes that are then used for further optimization
steps. Then we added a new step in which our tool encodes the high-level changes bet-
ween two source codes as a string and then compares all strings from the source code
archive with the Needleman-Wunsch algorithm. This comparison results in similarity
scores between the strings. If two strings have a high similarity score, then the sour-
ce code changes that are represented by those two strings arealmost identical, which
means that the changes belong to the same group of code modification. Finally, the tool
classifies the groups and processes them as before in order togenerate the patterns of
suboptimal and better code.

Parts of the project are funded by the http://www.esi-anwendungszentrum.de/ .

2.10 Software Project Control Center

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dr.-Ing. Josef Adersberger
Norbert Tausch, M. Eng.
Duration: 1.11.2009–31.12.2014

16

Sponsored by:
Bundesministerium f̈ur Wirtschaft und Technologie
Contact:
Prof. Dr. Michael Philippsen
Phone: +49-9131-85-27625
Fax: +49-9131-85-28809
E-Mail: michael.philippsen@fau.de

Prototypical implementation of a new tool for quality assurance during soft-
ware development

Modern software systems are getting increasingly complex with respect to functional,
technical and organizational aspects. Thus, both the number of requirements per system
and the degree of their interconnectivity constantly increase. Furthermore the technical
parameters, e.g., for distribution and reliability are getting more complex and software
is developed by teams that are not only spread around the globe and also suffer from in-
creasing time pressure. Due to this, the functional, technical, and organizational control
of software development projects is getting more difficult.

The ”Software Project Control Center” is a tool that helps the project leader, the software
architect, the requirements engineer, or the head of development. Its purpose is to make
all aspects of the development process transparent and thusto allow for better project
control. To achieve transparence, the tool distills and gathers properties from all artifacts
and correlations between them. It presents/visualizes this information in a way suitable
for the individual needs of the users.

The Software Project Control Center unifies the access to relations between artifacts
(traceability) and to their properties (metrics) within software development projects.
Thus, their efficiency can be significantly increased. The artifacts, their relations, and
related metrics are gathered and integrated in a central data store. This data can be
analyzed and visualized, metrics can be computed, and rulescan be checked.

For the Software Project Control Center project we cooperate with the QAware GmbH,
Munich. The AIF ZIM program of the German Federal Ministry ofEconomics and
Technology funded the first 30 months of the project.

The Software Project Control Center is divided into two subsystems: The integration
pipeline that gathers traceability data and metrics from a variety of software engineering
tools, and the analysis core, that allows to analyze the integrated data in a holistic way.
Each subsystem is developed in a separate subproject.

The project partner QAware GmbH implements the integrationpipeline. The first step
was to define TraceML, a modeling language for traceability information in conjunction
with metrics. The language contains a meta-model and a modellibrary. TraceML allows

17

to define customized traceability models in an efficient way.The integration pipeline is
realized using TraceML as lingua franca in all processing steps: From the extraction
of traceability information to its transformation and integrated representation. We used
the Eclipse Modeling Framework to define the TraceML models on each meta-model
level. Furthermore, we use the Modeling Workflow Engine for model transformations
and Eclipse CDO as our model repository. A set of wide-spread tools for software en-
gineering are connected to the integration pipeline including Subversion, Eclipse, Jira,
Enterprise Architect and Maven.

The main research contribution of our group to this project is the analysis core, i.e.,
the design and realization of a domain-specific language forgraph-based traceability
analysis. Our Traceability Query Language (TracQL) significantly reduces the effort
that is necessary to implement traceability analyses. Thisis crucial for both industry
and the research community as lack of expressiveness and inefficient runtimes of other
known approaches hinder the implementation of traceability analysis. TracQL eases not
only the extraction, but also the analysis of traceability data using graph traversals that
are denoted in a concise functional programming style. The language itself is built on
top of Scala, a multi-paradigm programming language, and was successfully applied
to several real-world industrial projects. In 2013, we increased its expressiveness by
improving modularity and static typing.

2.11 Compiler-supported parallelization for multi-core architectu-
res

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Tobias Werth
Start: 1.3.2007
Contact:
Dipl.-Inf. Tobias Werth
Phone: +49-9131-85-28865
Fax: +49-9131-85-28809
E-Mail: tobias.werth@fau.de

Several issues significantly retard the development of quicker and more efficient
computer architectures. Traditional technologies can no longer contribute to offer more
hardware speed. Basic problems are the divergent ratio of thelatencies of memory
access and CPU speeds as well as the heat and waste of energy caused by increasing
clock rates.

18

Homogeneous and heterogeneous multi-core architectures were presented as a possible
answer and offer enormous performance to the programmer. The decreasing clock rates
help avoid most of the above problems, while the multiplied hardware can still deliver
high performance since more arithmetic operations can be executed per time unit with
less energy. Potentially, performance can increase even further by specialization of some
hardware components. For example, often the latency problem is attacked with a multi-
tiered memory hierarchy and lots of caches.

But there is no free lunch. It seems to be quite difficult to makemulti-core architectures
deliver their theoretically available performance into applications. Only with a lot of
expertise in both the application domain and the specifics ofthe multi-core platform at
hand and only with enough time to invest into tuning endeavors, one can make multi-
core programs run fast.

From the point of view of a programming systems research group, there are - among
others - the following open questions: What kind of support can a modern compiler
offer to the programmer that develops applications for multi-core architectures? How
much context knowledge is necessary in order to make reasonable decisions for par-
allelization? Which part of the available performance can beused by the programmer
with a reasonable amount of effort without detailed knowledge about the features and
quirks of the underlying architecture? Which tools are necessary for debugging and for
finding bottlenecks in applications that run on multi-core architectures? How can they
be designed?

It is the intention of this research project to answer these questions for a restricted app-
lication domain. We have selected the Lattice-Boltzmann-Method (LBM) that is mostly
used in computational fluid dynamics as our problem domain. Caused by its lattice struc-
ture and its manageable number of data dependencies betweenthe single lattice points,
it is comparatively straightforward how to parallelize it.Hence, our compiler research
can focus on the above questions.

The heterogeneous CellBE architecture is selected as target architecture due its good
performance on a single chip. It consists of a PowerPC core (PPU) and eight Synergistic
Processing Units (SPUs), which can do computations in parallel. The programming
model Cilk was further developed to allow a robust and efficient execution on the SPUs.
We made it much easier to debug the execution while stealing functions from remote
SPUs. Beside that, the source to source transformation was rewritten to produce code
for both PPU and SPU in a simpler and more generic way.

In 2012, we focused on graphic cards (GPUs) as a second targetarchitecture. GPUs
offer a lot more performance than ordinary CPUs, however achieving peak performance
may be difficult. For data parallel problems, the performance can be achieved using
Cuda (NVidia) or OpenCL (AMD) relatively easy. However, it is much more difficult
to port task parallel problems with reasonable performanceto the GPU, which is one

19

of the goals on our roadmap. Thus, we design, implement and compare various load
balancing algorithms. In 2012 we designed a first approach with hierarchical queues
under the principle of work donation.

In 2013, while further developing the load balancing algorithms for the GPU, we also
targeted our work towards the Intel XeonPhi processor. Withits many-core architecture
and large register sets (and thus the ability to issue vectorinstructions on multiple data),
the XeonPhi processor is a new challenge for load balancing algorithms. In practice,
we extended and adopted Cilk for the XeonPhi such that we can automatically merge
functions during the source-to-source transformation. This increases the Intel compiler’s
chances to automatically parallelize. We implemented several analyses that not only
increase the number of candidate functions for merging but also avoid (or at least handle)
divergence in those merged functions.

2.12 WEMUCS - Techniques and tools for iterative development
and optimization of software for embedded multicore systems

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Demian Kellermann, M. Sc.
Dr.-Ing. Norbert Oster
PD Dr. Ronald Veldema
Start: 15.10.2012
Sponsored by:
IuK Bayern
Contact:
Prof. Dr. Michael Philippsen
Phone: +49-9131-85-27625
Fax: +49-9131-85-28809
E-Mail: michael.philippsen@fau.de

The importance of multicore processors in embedded systemsis rising, as these
processors offer high performance while maintaining low power consumption. Deve-
loping parallel software for these platforms poses new challenges for many industrial
sectors, because established tools and software are not aware of parallel processing.
The efficient development, optimization and testing of multicore-software are still open
research problems.

The multi-partner WEMUCS project provides new tools and methods for efficient, ite-
rative development, optimization and testing of multicoresoftware. Innovative tools and

20

technologies for modelling, simulation, visualization, tracing, and testing are developed
and integrated into a tool chain. Using case studies from different industries (automoti-
ve, telecommunications, industry automation), these tools are evaluated and improved.

As part of the WEMUCS project, we are developing new ways to model parallel pro-
cesses, making it possible to identify problems and reproduce them in a testing envi-
ronment. We also explore what chances a compiler analysis has to identify and report
problematic parallelism to the test environment.

The project is a contribution of the Programming Systems Group to the IZ ESI (
http://www.esi.uni-erlangen.de/).

3 Publications 2013

– Kempf, Stefan ; Veldema, Ronald ; Philippsen, Michael: Combining Lock In-
ference with Lock-Based Software Transactional Memory . In:Springer (Ed.) :
Proceedings of the 26th International Workshop on Languages and Compilers
for Parallel Computing (LCPC 2013) (26th International Workshop on Langua-
ges and Compilers for Parallel Computing (LCPC 2013) Santa Clara, California,
USA). 2013, pp -.

– Kempf, Stefan ; Veldema, Ronald ; Philippsen, Michael: Compiler-Guided Iden-
tification of Critical Sections in Parallel Code . In: De Bosschere, Koen ; Jha-
la, Ranjit (Ed.) : Proceedings of the 22nd International Conference on Compi-
ler Construction (International Conference on Compiler Construction Italy, Rome
21.-22.03.2013). 2013, pp 204-223. - ISBN 978-3-642-37050-2

– Kempf, Stefan ; Veldema, Ronald ; Philippsen, Michael: Reduktion von False-
Sharing in Software-Transactional-Memory . In: GI (Ed.) : Proceedings of the
25th Workshop on Parallel Systems and Algorithms (PARS 2013)(25th Work-
shop on Parallel Systems and Algorithms (PARS 2013) Erlangen, Germany 11.-
12.04.2013). 2013, pp 70-79.

– Lautenschlager, Florian: Design for Diagnosability: Wiemache ich Software dia-
gnostizierbar? In: the coaches (Org.) : German Testing Day 2013 (German Testing
Day 2013 Munich, Germany 12.11.2013). 2013, pp -.

– Loeffler, Christoffer ; Mutschler, Christopher ; Philippsen, Michael: Evolutionary
Algorithms that use Runtime Migration of Detector Processesto Reduce Latency
in Event-Based Systems . In: IEEE Computer Society (Ed.) : Proceedings of the
2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013)

21

(2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013)
Torino, Italy June 25-27, 2013). 2013, pp 31-38. - ISBN 978-1-4673-6382-2

– Mutschler, Christopher: Apparatus, Method, and Computer Program for Pro-
cessing Out-of-Order Events . Schutzrecht EP13153525.4 patent application
(31.01.2013)

– Mutschler, Christopher ; Philippsen, Michael: Distributed Low-Latency Out-of-
Order Event Processing for High Data Rate Sensor Streams . In:IEEE Com-
puter Society (Ed.) : Proceedings of 27th International Parallel and Distributed
Processing Symposium (27th IEEE International Parallel & Distributed Proces-
sing Symposium (IPDPS) Boston, Massachusetts, USA May 20-24, 2013). 2013,
pp 1133-1144. - ISBN 978-0-7695-4971-2

– Mutschler, Christopher ; Witt, Nicolas ; Philippsen, Michael: Do Event-Based
Systems have a Passion for Sports? (Best Poster/Demo Audience Award) .
In: ACM (Ed.) : Proceedings of the 7th ACM International Conference on Dis-
tributed Event-Based Systems (7th ACM International Conference on Distributed
Event-Based Systems Arlington, Texas, USA 29.06. - 03.07.2013). 2013, pp 331-
332. - ISBN 978-1-4503-1758-0

– Mutschler, Christopher ; Philippsen, Michael: Dynamic Low-Latency Distributed
Event Processing of Sensor Data Streams . In: Gesellschaft für Informatik e.V.
(Ed.) : Proceedings of the 25th Workshop on Parallel Systemsand Algorithms
(PARS 2013), ISSN 0177-0454 (25th Workshop on Parallel Systems and Algo-
rithms (PARS 2013) Erlangen, Germany 11.-12.04.2013). 2013, pp 5-14.

– Mutschler, Christopher ; Philippsen, Michael: Reliable Speculative Processing
of Out-of-Order Event Streams in Generic Publish/Subscribe Middlewares .
In: ACM (Ed.) : Proceedings of the 7th ACM International Conference on Dis-
tributed Event-Based Systems (7th ACM International Conference on Distributed
Event-Based Systems Arlington, Texas, USA 29.06. - 03.07.2013). 2013, pp 147-
158. - ISBN 978-1-4503-1758-0

– Mutschler, Christopher ; Philippsen, Michael: Runtime Migration of Stateful
Event Detectors with Low-Latency Ordering Constraints . In:IEEE (Ed.) : Pro-
ceedings of the 2013 IEEE International Conference on Pervasive Computing and
Communications Workshops (9th International Workshop on Sensor Networks
and Systems for Pervasive Computing San Diego, CA, USA 18.-22.03.2013).
2013, pp 609-614. - ISBN 978-1-4673-5075-4

– Mutschler, Christopher ; Ziekow, Holger ; Jerzak, Zbigniew: The DEBS 2013
Grand Challenge . In: ACM (Ed.) : Proceedings of the 7th ACM International

22

Conference on Distributed Event-Based Systems (7th ACM International Con-
ference on Distributed Event-Based Systems Arlington, Texas, USA 29.06. -
03.07.2013). 2013, pp 289-294. - ISBN 978-1-4503-1758-0

– Otto, Stephan ; Edelhäußer, Thorsten ; Witt, Nicolas ; V̈olker, Matthias ; Voll,
David ; Mutschler, Christopher: Apparatus, Method and Computer Program for
Providing a Virtual Boundary . Schutzrecht EP13156961.8 patent application
(27.02.2013)

– Philippsen, Michael ; Tillmann, Nikolai ; Brinkers, Daniel: Double inspection for
run-time loop parallelization . In: Rajopadhye, S. ; Strout,M. Mills (Ed.) : Procee-
dings of the 24th International Workshop on Languages and Compilers for Par-
allel Computing (LCPC 2011) (24th International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2011) Fort Collins, Colorado, USA 08.-
10.09.2011). Berlin : Springer-Verlag Berlin Heidelberg, 2013, pp 46-60. (Lecture
Notes in Computer Science (LNCS) Vol. 7146) - ISBN 978-3-642-36035-0

– Veldema, Ronald ; Philippsen, Michael: Language and RuntimeTechniques for
better Model Checking Efficiency of Parallel Programs . In: Springer (Ed.) : Pro-
ceedings of the 26th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 2013), Poster Session (26th International Workshop
on Languages and Compilers for Parallel Computing (LCPC 2013) Santa Clara,
California, USA 25.09. - 27.09.2013). 2013, pp -.

– Werth, Tobias ; Schreier, Silvia ; Philippsen, Michael: CellCilk: Extending Cilk
for heterogeneous multicore platforms . In: Rajopadhye, S. ;Strout, M. Mills (Ed.)
: Proceedings of the 24th International Workshop on Languages and Compilers
for Parallel Computing (LCPC 2011) (24th International Workshop on Langua-
ges and Compilers for Parallel Computing (LCPC 2011) Fort Collins, Colorado,
USA 08.-10.09.2011). Berlin : Springer-Verlag Berlin Heidelberg, 2013, pp 91-
105. (Lecture Notes in Computer Science (LNCS) Vol. 7146) - ISBN978-3-642-
36035-0

– Wolf, Carolin ; Dotzler, Georg ; Veldema, Ronald ; Philippsen, Michael: Object
Support for OpenMP-style Programming of GPU Clusters in Java. In: IEEE
Computer Society (Ed.) : Proceedings of the 27th International Conference on
Advanced Information Networking and Applications Workshops (WAINA 2013)
(27th International Conference on Advanced Information Networking and Appli-
cations Workshops Barcelona, Spain 25.03.-28.03.2013). 2013, pp 1405-1410. -
ISBN 978-1-4673-6239-9

23

4 Exam theses (german only)

– Master Thesis: Konzeption und prototypische Realisierungeines Integrationsf-
rameworks f̈ur Entwicklungswerkzeuge. Bearbeiter: Julia Mailova (beendet am
24.4.2013); Betreuer: Dr.-Ing. Martin Jung; Hon.-Prof. Dr.-Ing. Detlef Kips

– Master Thesis: Entfernung̈uberfl̈ussiger Thread-Synchronisationen in NGAPL.
Bearbeiter: Philipp Weissmann (beendet am 26.4.2013); Betreuer: PD Dr. Ronald
Veldema; Prof. Dr. Michael Philippsen

– Diplomarbeit: Re-Engineering des Werkzeugs .gEAr zum Eclipse-Plugin f̈ur die
aktuelle Sprachversion von Java. Bearbeiter: Waldemar Krawtschuk (beendet am
15.08.2013); Betreuer: Dr.-Ing. Norbert Oster; Prof. Dr. Michael Philippsen

– Bachelor Thesis: Evaluation und prototypische Implementierung eines Parsers
für Ereignisbeschreibungssprachen in Echtzeitlokalisierungssystemen. Bearbei-
ter: Cerny Patrick (beendet am 11.11.2013); Betreuer: Dipl.-Inf. Christopher
Mutschler; Prof. Dr. Michael Philippsen; Dr.-Ing. Thorsten Edelḧaußer

– Bachelor Thesis: Entwicklung einer adaptiven HMI-Schnittstelle zur Erkennung
von Gesten auf Basis hochpräziser Echtzeitlokalisierung. Bearbeiter: Dennis
Salzner (beendet am 2.12.2013); Betreuer: Dipl.-Inf. Christopher Mutschler; Dr.-
Ing. Stephan Otto; Prof. Dr. Michael Philippsen

– Master Thesis: Entwicklung eines Werkzeugs zur Identifizierung vergleichba-
rer Code-Modifikationen in Software-Archiven. Bearbeiter: Christoph Romsẗock
(beendet am 3.12.2013); Betreuer: Dipl.-Inf. Georg Dotzler; Prof. Dr. Michael
Philippsen

– Studienarbeit: Entwurf und Implementierung eines Visualisierungs- und Explo-
rationskonzeptes für multi-relationale Pseudographen am Beispiel der Software-
Traceability. Bearbeiter: Peter Kranz (beendet am 12.12.2013); Betreuer: Norbert
Tausch, M. Eng.; Prof. Dr. Michael Philippsen

24

	Focus of research
	Research projects
	Design for Diagnosability
	Efficient Software Architectures for Distributed Event Processing Systems
	Embedded Systems Institute
	ErLaDeF - Embedded Realtime Language Development Framework
	Graphs and Graph Transformations
	International Collegiate Programming Contest at the FAU
	InThreaT - Inter-Thread Testing
	OpenMP/Java
	PATESIA - Parallelization techniques for embedded systems in automation
	Software Project Control Center
	Compiler-supported parallelization for multi-core architectures
	WEMUCS - Techniques and tools for iterative development and optimization of software for embedded multicore systems

	Publications 2013
	Exam theses (german only)

