
Annual Report of the Chair of Computer Science 2
(Programming Systems)

Address: Martensstr. 3, 91058 Erlangen
Phone: +49-9131-85-27621
Fax: +49-9131-85-28809
E-Mail: info@i2.informatik.uni-erlangen.de

Ordinarius:
Prof. Dr. Michael Philippsen
Honorary Professor:
Hon.-Prof. Dr.-Ing. Bernd Hindel
Hon.-Prof. Dr.-Ing. Detlef Kips
Professor Emeritus:
Prof. em. Dr. Hans Jürgen Schneider
Secretary:
Agnes Brütting
Scientific Staff:
Dipl.-Inf. Thorsten Blaß
Dipl.-Inf. Daniel Brinkers
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Stefan Kempf
Dipl.-Math. Jakob Krainz
Andreas Kumlehn, M. Sc.
Dipl.-Inf. Christopher Mutschler
Dr.-Ing. Norbert Oster
Norbert Tausch, M. Eng.
PD Dr. Ronald Veldema
Dipl.-Inf. Tobias Werth
Guest:
Dr.-Ing. Josef Adersberger
Dipl.-Inf. Samir Al-Hilank
Sören Braunstein, M. Sc.
Dipl.-Inf. Ralf Ellner
Dr.-Ing. Martin Jung
External Teaching Staff:
Dr.-Ing. Klaudia Dussa-Zieger
Dr.-Ing. Stephan Otto

1

The Chair of Computer Science 2 (programming systems) was founded in 1972 and is
headed by Prof. Michael Philippsen (as the successor of Prof. H.-J. Schneider) since
April 2002. Closely associated with the programming systems group are the professor-
ship for Didactics of Computer Science and the professorship for Open Source Software.

1 Focus of research

The main research topics in the programming systems group are programming of paral-
lel or distributed systems and programming of embedded or mobile systems. Software
(and its development) for such systems should ideally be as complex, portable, main-
tainable and robust as existing software for single core systems and workstations. It is
our long-term goal to allow applications to take full advantage of the available compu-
ting and network power. A particular focus lies on programming systems for multi-cores
because more and more cheap multi-core high-performance parallel hardware (for ex-
ample graphics cards or FPA-Hardware) is available. This will have an unpredictable
impact on the future of the software landscape. Research results of the group are always
evaluated by means of prototypes and demonstrators.

Important Research Areas

• Exploit the available parallelization potential. In the future the clock rate of
multi-core systems will grow only slowly whereas the number of cores will grow.
This makes it necessary to exploit the parallelization potential of already older,
existing software to allow it to benefit from the new hardware. As a consequence,
in most application areas a change to parallel computing is unavoidable. There-
fore, the programming systems group develops tools to support the programmer
interactively in reengineering existing sequential applications. It also develops ar-
chitectural patterns for new software projects that scale automatically to support
a growing number of cores.

• Achieve portability in high-performance applications. Up to the present, app-
lication programmers achieve the best possible performance results only if they
handle latency issues and communications between different components of the
system manually, optimize their code with hardware specific ”tricks” and split
their application into multiple sections to outsource them to other hardware
(for example graphics cards). To change this situation, the programming sys-
tems group researches the performance impact of higher programming abstrac-
tion layers that would improve programming productivity and software portabi-
lity. The improvements are caused by generated code that allows the distribution

2

of the program onto multiple heterogeneous system components to permit par-
allel execution. The higher abstraction layer makes the communication between
the components transparent for the developer. To increase the efficiency of this
approach it is necessary to give the programmer the possibility to express availa-
ble domain knowledge in the programming language. For the higher abstraction
layer, the details of the hardware architecture are hidden from the developer (for
example by library functions or programming language extensions).

• Adapt the degree of parallelism dynamically. High-performance applications
are often developed for a fixed number of cores. As requested cluster nodes of a
batch system are statically assigned for a fixed time period, inefficient reservation
gaps are unavoidable. Similar problems appear in multi-threaded applications on
multi-core systems. The programming systems group works on the dynamic ad-
aptation of the extent of parallelism by the means of code transformations (under
consideration of the resulting data redistribution) and operating system interacti-
ons. As control flow based synchronization measures interfere with the necessa-
ry analyzes, the programming systems group researches new programming con-
structs that can replace the existing ones and allow to specify the synchronization
in a data-centric way.

• Develop Testing for Parallelism. In software engineering, testing has always
assumed an important role. Code coverage, test data generation, reliability as-
sessment etc. are tools of the trade. Unfortunately, current research insufficiently
covers the indeterminism caused by concurrency. To deal with that issue, the pro-
gramming systems group develops tools that consider (based on the coverage cri-
teria) interleavings of parallel threads in their test data generation. This topic also
includes research on operating systems and schedulers. As concurrency consi-
derably increases the search space of the test generation it is necessary to develop
infrastructures that allow the test generation and execution on a cluster.

• Improve of Software Development Processes. The current development practi-
ce of complex, business or security critical software in global distributed teams
(commonly found in the software industry) demands compliance with well-
defined software development processes. To support the enforcement of this re-
quirement, appropriate development tools are used. The Practical Software Engi-
neering research group that is lead by the honorary professors Dr. Bernd Hindel
and Dr. Detlef Kips cover the corresponding research area. Both possess long term
experience in industrial software projects as managers of medium sized software
companies. The goal of the Practical Software Engineering group is the develop-
ment of a machine executable notation for modeling of software development pro-
cesses. For that purpose the research group examines the semi-automatic retrieval

3

of traceability information from the artefacts of different tools and notations as
well as the model based development, integration and configurations of software
components, used in the design of automotive embedded systems.

2 Research projects

2.1 ErLaDeF - Embedded Realtime Language Development Fra-
mework

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
PD Dr. Ronald Veldema
Andreas Kumlehn, M. Sc.
Sören Braunstein, M. Sc.
Dipl.-Inf. Thorsten Blaß
Dipl.-Math. Jakob Krainz
Dipl.-Inf. Daniel Brinkers
Start: 1.1.2012
Contact:
PD Dr. Ronald Veldema
Phone: +49-9131-85-27622
Fax: +49-9131-85-28809
E-Mail: ronald.veldema@fau.de

ErLaDeF is our test-bed for new programming language and compiler techni-
ques. Our main focus is on building infrastructure for easier (hard + soft) real-time
embedded parallel systems programming.

Real-time and embedded software have hard constraints on resource usage. For exam-
ple, a task should complete in a fixed amount of time, have guaranteed upper-limits on
the amount of memory used, etc. Systems software is software that is critical to the
functioning of a device. For example, a device driver is such a critical piece of software.
Current and future embedded hardware is, however, multi-core so that the embedded,
real-time systems programs mentioned above need to be parallelized while still obser-
ving the constraints that the real-time, embedded software layers impose.

We are developing different ways to manage this concurrency using a combination of
strategies: simpler language features, automatic parallelization, libraries of parallel pro-

4

gramming patterns, deep compiler analysis, model checking, and making compiler ana-
lysis fast enough for interactive use.

• Using simpler language features (compared to, for example, Java or C#) ensures
that the compiler analysis finds the existing concurrency and real-time violation
bugs. This forms a basis of the other techniques we pursue in this project. In 2012
we have explored alternatives to polymorphism and inheritance that may be easier
to analyze. We have also examined alternative thread-synchronization methods,
for example transactional memory, implicit synchronization, remote procedure
calls, etc.

• Our automatic parallelization efforts are currently focused on dynamic paralleliza-
tion. While a program is running, it is analyzed to find loops where parallelization
can help performance. Our current idea is to run long-running loops three times.
The first two runs analyze the memory accesses of the loop and can both run in
parallel. The first run saves for every memory address, in which loop iteration a
write access happens in a shared data structure. We do not need any synchroniza-
tion for this data structure, only the guarantee that one value is written to memory,
when two concurrent writes happen. In the second pass we check for every memo-
ry access, if it has a dependency to one of the saved write accesses. A write access
is part of any data-dependency, so we can find all types of data-dependencies. If
we don’t find any, the loop is actually run in parallel. If we find dependencies, the
loop is executed sequentially. We have already seen performance gains using this
method. In 2012 we have made progress on our parallelization framework. We
have started work on techniques to allow the first few iterations of a loop to run
sequentially while we concurrently determine if the rest of the loop can be run in
parallel. This saves the cost of waiting for the inspection passes to finish in case
the loop turns out to be not parallelizable.

• A well-debugged library of parallel programming patterns allows a programmer
to select well-known parallelization and inter-core communication strategies. We
are performing research into what (communication) patterns actually exist and
where they can be applied. In 2012 we have examined different ways to let cores
communicate values over communication channels and made a preliminary over-
view of higher-level communication patterns. Already some 30+ different ways
of letting cores communicate have been discovered. For each of the 30+ patterns
we have created a list of different properties and usage constraints. The main usa-
ge for our study is for determining when a communication pattern applies in a
hard real-time environment. A pattern that is blocking for both reads and writes
is, for example, less suitable than a pattern that never blocks. We will next try to
automatically select one of these patterns for a given use case.

5

• Deep compiler analysis not only covers single functions, but it considers the who-
le program to find bugs. An example of a deep analysis that we are currently
pursuing is heap analysis. Heap analysis can answer questions such as: Which
variables have a reference to this object? Which objects have references to this
other object? In 2012 we have made good progress into creation of a program
analysis framework that allows partial lazy evaluation of programs and that alrea-
dy allows partial incremental analysis. More work is needed to make the analysis
fully incremental.

• Model checking examines all interleavings of threads to determine if a concur-
rency bug can occur. Bugs that a model checker can find are race conditions,
deadlocks, etc. A model checker can guarantee that a bug is found at the cost of
long analysis times. In 2012 we have made progress in coding a general, langua-
ge independent model checking framework. It is future work to optimize our new
model checker by for example parallelization and algorithmic changes.

• To ensure that program design errors are caught early in the development cycle,
it is necessary to find bugs while editing. This requires that any program analysis
works at interactive speeds. We are following two approaches to this. The first
approach addresses algorithmic changes to program analysis problems. Making
analysis problems lazy means that only those parts of a program should be exami-
ned that are pertinent to the question that is currently asked by the compiler. For
example, if the compiler needs to know which functions access a certain object,
it should not examine unrelated functions, classes, or packages. Making program
analysis incremental means that a small change in the program should only require
small work for the (re-)analysis. In 2012 our new program analysis framework has
been extended to find race conditions at compile-time and does so by performing
partial lazy and incremental analysis. Our second approach to bring compiler ana-
lysis to interactive speed is to make the analysis itself parallel. In 2012 we have
started to develop data-parallel formulations of the basic compiler analyses. The
data-parallel analyses are then portably executable on different multi-core archi-
tectures. As a building block, we have started to implement a generic data-parallel
predicate propagation framework that works on both multi-core CPUs and GPUs.

2.2 InThreaT - Inter-Thread Testing

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dr.-Ing. Norbert Oster
Start: 1.1.2012

6

Contact:
Dr.-Ing. Norbert Oster
Phone: +49-9131-85-28995
Fax: +49-9131-85-28809
E-Mail: norbert.oster@fau.de

In order to achieve higher computing performance, microprocessor manufacturers
do not try to achieve faster clock speed anymore - on the contrary: the absolute number
of cycles has even decreased, while the number of independent processing units (cores)
per processor is continually increased. Due to this evolution, developers must learn
to think outside the box: The only way to make their applications faster (in terms of
efficiency) is to modularize their programs such that independent sections of code
execute concurrently. Unfortunately, present-day systems have reached a level of
functional complexity, such that even software for sequential execution is significantly
error-prone - the parallelization for multiple cores adds yet another dimension to the
non-functional complexity. Although research in the field of software engineering
emerged several different quality assurance measures, there are still very few effective
methods for testing concurrent applications, as the broad emergence of multi-core
systems is relatively young.

This project aims to fill that gap by providing an automated test system. First of all, a
testing criteria hierarchy is needed, which provides different coverage metrics tightly
tailored to the concept of concurrency. Whilst for example branch coverage for sequen-
tial programs requires the execution of each program branch during the test (i.e. making
the condition of an if-statements both true and false - even if there is no explicit else
branch), a thorough test completion criterion for concurrent applications must demand
for the systematic execution of all relevant thread interleavings (i.e. all possibly occur-
ring orderings of statements, where two threads may modify a shared memory area).
A testing criterion defines the properties of the ”final” test set only, but does not pro-
vide any support for identifying individual test cases. In contrast to testing sequentially
executed code, test scenarios for parallel applications must also comprise control infor-
mation for deterministically steering the execution of the TUT (Threads Under Test).

In 2012, a framework for Java has been developed, which automatically generates such
control structures for TUT. The tester must provide the bytecode of his application only;
further details such as source code or restrictions of the test scenario selection are op-
tional. The approach uses aspect-oriented programming techniques to enclose memory
access statements (reads or writes of variables, responsible for typical race conditions)
with automatically generated advices. After weaving the aspects into the SUT (System
Under Test), variable accesses are intercepted at runtime, the execution of the corre-
sponding thread is halted until the desired test scenario is reached, and the conflicting
threads are reactivated in the order imposed by the given test scenario. In order to de-

7

monstrate the functionality, some naive sequence control strategies were implemented,
e.g. alternately granting access to shared variables from different threads.

2.3 OpenMP/Java

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
PD Dr. Ronald Veldema
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blaß
Duration: 1.10.2009–1.10.2015

JaMP is an implementation of the well-known OpenMP standard adapted for Ja-
va. JaMP allows one to program, for example, a parallel for loop or a barrier without
resorting to low-level thread programming. For example:

class Test {
...void foo(){
......//#omp parallel for

......for (int i=0;i<N;i++) {

.........a[i]= b[i]+ c[i]

......}

...}
}
is valid JaMP code. JaMP currently supports all of OpenMP 2.0 with partial support
for 3.0 features, e.g., the collapse clause. JaMP generates pure Java 1.5 code that runs
on every JVM. It also translates parallel for loops to CUDA-enabled graphics cards for
extra speed gains. If a particular loop is not CUDA-able, it is translated to a threaded
version that uses the cores of a typical multi-core machine. JaMP also supports the use of
multiple machines and compute accelerators to solve a single problem. This is achieved
by means of two abstraction layers. The lower layer provides abstract compute devices
that wrap around the actual CUDA GPUs, OpenCL GPUs, or multicore CPUs, wherever
they might be in a cluster. The upper layer provides partitioned and replicated arrays.
A partitioned array automatically partitions itself over the abstract compute devices and
takes the individual accelerator speeds into account to achieve an equitable distribution.
The JaMP compiler applies code-analysis to decide which type of abstract array to use
for a specific Java array in the user’s program.

8

In 2012, we extended the JaMP framework to also handle Java objects on multiple ma-
chines and accelerators (and not just arrays of primitive types). We added two different
ways to handle objects. Standard shared objects are replicated on all compute devices.
Arrays of objects are now also replicated or partitioned over the different devices. To
increase the performance of the program, the framework has to break with Java’s se-
mantics. Java’s object structure is mapped to a flat memory structure for the execution
on the different devices.

2.4 PATESIA - Parallelization techniques for embedded systems in
automation

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Stefan Kempf
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blaß
Start: 1.6.2009
Sponsored by:
ESI-Anwendungszentrum
Participating institutions:
ESI-Anwendungszentrum
Contact:
Dipl.-Inf. Stefan Kempf
Phone: +49-9131-85-27624
Fax: +49-9131-85-28809
E-Mail: stefan.kempf@fau.de

This project was launched in 2009 to address the refactorization and paralleliza-
tion of applications used in the field of automation. The programs are executed on
specially designed embedded systems. This hardware forms an industry standard and
is used worldwide. As multicore-architectures are increasingly used in embedded
systems, existing sequential software must be parallelized for these new architectures
in order to gain an improvement of performance. As these programs are typically used
in the industrial domain for the control of processes and factory automation they have
a long life cycle. Because of this, the programs are often not being maintained by their
original developers any more. Besides that, a lot of effort was spent to guarantee that
the programs work reliably. For these reasons, the software is only extended in a very
reluctant way. Therefore, a migration of these legacy applications to new hardware
and a parallelization cannot be done manually, as it is too error prone. Thus, we need

9

tools that perform these tasks automatically or aid the developer with the migration and
parallelization.

To achieve this, this project works in three areas. The first part examines compiler analy-
sis and programming language features needed so that in total, a novice programmer can
effectively create solutions for real-time systems. For example, we have examined tech-
niques to absolve the programmer from synchronization tasks and still allow low-level
memory manipulations. To speedup compiler analysis, we have started investigations
into accelerator use (GPUs) and algorithmic changes to get advanced compiler analysis
fast enough for interactive use.

To work on the second part, a special compiler for the parallelization of existing automa-
tion programs was developed. First, we examined applications for automation on their
automatic parallelizability. We found that these programs need to be refactored first, in
order to be able to efficiently parallelize them automatically. For this reason, and as a
second step, we extended the compiler to search for critical programming constructs
that hinder parallelization, and to make the developer aware of them. The patterns we
try to find are integrated into the compiler. This part is the origin of the migration tool
described above, where the patterns can be described in a special language. The libra-
ry of the runtime environment dynamically distributes parallel tasks that are created at
runtime over the available cores. This mechanism was made more efficient by an in-
ternal reorganization, in order to evenly balance the work over all cores. Besides that,
an implementation of transactional memory and a model for interrupt handling was ad-
ded to the library as well. In 2012, the compiler was extended to automatically detect
critical sections in parallel code. The mutual exclusion of the critical sections is im-
plemented with Software Transactional Memory (STM). Moreover, STM optimizations
were implemented. Previously, STM systems used a fixed-size table of locks to imple-
ment mutual exclusion of atomic blocks. This setup has shown to be a bottleneck at
runtime. The optimizations scale the size of the table according to the workload of the
application.

The third aspect focuses on optimization, refactorization and migration of legacy ap-
plications in order to render them operational on next-generation embedded systems.
In this project we also develop a self-learning expert system. The goal of the system
is to support developers in optimizing and refactoring their programs without forcing
developers to specify the search patterns and transformations by hand. Instead the sys-
tem extracts code transformations by comparing unmodified and modified source code
and is able to apply these transformations to other programs. In a first step, parsers for
different programming languages, C and Java amongst others, were developed. The par-
sers built a language independent abstract syntax tree (AST) from the different source
codes. After that, a prototype was developed that finds code patterns suitable for trans-
formations in an AST. If a pattern in an AST is found, the system generates source
code that contains the applied transformation. The changed source code is presented to

10

the developers as recommendation. For the recommendation generation, patterns from
a database, extracted from the comparison of original and transformed source code, are
used.

Annotations allow the generalization of the patterns. The annotations can access dif-
ferent plugins to be used even more flexible. The usefulness of the generated recom-
mendations was demonstrated with source code of the Apache http server, the STAMP
benchmark suite and the Java Grande benchmark suite. In the tests, extracted patterns
were found in the source codes and suitable transformations for the occurrences were
presented as recommendations.

In 2012 a transformation tool was added to the system. The goal of the transforma-
tion tool is the generation of general patterns from different code versions found in
open-source version control systems. With a classification system, the tool recognizes
irrelevant patterns and discards them. Only suitable patterns are saved in a database for
later use.

Another part that was already finished in 2011 examines the migration of legacy app-
lications to new hardware platforms. The challenge here is that the development envi-
ronments for the new platforms do not support all language constructs that that have
been available on the old hardware. This means that the programs need to be refactori-
zed. Second, we examine how the applications can be automatically parallelized after
the migration is performed. To guarantee an efficient parallelization, the programs may
need to be further restructured. This also required work on the requirements of a runtime
environment for parallel programs. We also perform research in a third area that attempts
to combine the first two aspects in an expert system that uses a learning approach. The
goal is to create a general refactoring tool that can be used for both migration and paral-
lelization. The development for the migration tool was started in the end of 2010. This
subproject treats the problem of the automatic refactorization of code. The main element
is a special description language that can be used to describe code patterns that must be
refactored. This makes it easy to write rules for refactorings. A pattern is a sequence of
statements that should be replaced by some other code sequence. Another possibility is
to just inform the user about the occurrence of a pattern if the refactorization cannot be
done automatically. The description language, which is still in its development phase, is
designed to be easy to use and to be close to natural language. It is our goal to be able to
describe complex patterns in a simple and easy to learn way. We started with the design
of the language and the integration into a compiler for programming languages used in
the field of automation. This compiler is being developed at our department.

Parts of the project are funded by the ”ESI-Anwendungszentrum”:
http://www.esi-anwendungszentrum.de/

11

2.5 Compiler-supported parallelization for multi-core architectu-
res

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Tobias Werth
Start: 1.3.2007
Contact:
Dipl.-Inf. Tobias Werth
Phone: +49-9131-85-28865
Fax: +49-9131-85-28809
E-Mail: tobias.werth@fau.de

Several issues significantly retard the development of quicker and more efficient
computer architectures. Traditional technologies can no longer contribute to offer more
hardware speed. Basic problems are the divergent ratio of the latencies of memory
access and CPU speeds as well as the heat and waste of energy caused by increasing
clock rates.

Homogeneous and heterogeneous multi-core architectures were presented as a possible
answer and offer enormous performance to the programmer. The decreasing clock rates
help avoid most of the above problems, while the multiplied hardware can still deliver
high performance since more arithmetic operations can be executed per time unit with
less energy. Potentially, performance can increase even further by specialization of some
hardware components. For example, often the latency problem is attacked with a multi-
tiered memory hierarchy and lots of caches.

But there is no free lunch. It seems to be quite difficult to make multi-core architectures
deliver their theoretically available performance into applications. Only with a lot of
expertise in both the application domain and the specifics of the multi-core platform at
hand and only with enough time to invest into tuning endeavors, one can make multi-
core programs run fast.

From the point of view of a programming systems research group, there are - among
others - the following open questions: What kind of support can a modern compiler
offer to the programmer that develops applications for multi-core architectures? How
much context knowledge is necessary in order to make reasonable decisions for par-
allelization? Which part of the available performance can be used by the programmer
with a reasonable amount of effort without detailed knowledge about the features and
quirks of the underlying architecture? Which tools are necessary for debugging and for
finding bottlenecks in applications that run on multi-core architectures? How can they
be designed?

12

It is the intention of this new research project to answer these questions for a restric-
ted application domain. We have selected the Lattice-Boltzmann-Method (LBM) that
is mostly used in computational fluid dynamics as our problem domain. Caused by its
lattice structure and its manageable number of data dependencies between the single lat-
tice points, it is comparatively straightforward how to parallelize it. Hence, our compiler
research can focus on the above questions.

The heterogeneous CellBE architecture is selected as target architecture due its good
performance on a single chip. It consists of a PowerPC core (PPU) and eight Synergistic
Processing Units (SPUs), which can do computations in parallel. The programming
model Cilk was further developed to allow a robust and efficient execution on the SPUs.
We made it much easier to debug the execution while stealing functions from remote
SPUs. Beside that, the source to source transformation was rewritten to produce code
for both PPU and SPU in a simpler and more generic way.

In 2012, we focused on graphic cards (GPUs) as a second target architecture. GPUs
offer a lot more performance than ordinary CPUs, however achieving peak performance
may be difficult. For data parallel problems, the performance can be achieved using
Cuda (NVidia) or OpenCL (AMD) relatively easy. However, it is much more difficult
to port task parallel problems with reasonable performance to the GPU, which is one of
the goals on our roadmap. Thus, we will design, implement and compare various load
balancing algorithms. In 2012 we designed a first approach with hierarchical queues
that is based on the idea of work donation.

2.6 Efficient Software Architectures for Distributed Event Proces-
sing Systems

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Christopher Mutschler
Duration: 15.11.2010–14.11.2013
Sponsored by:
Fraunhofer Institut für Integrierte Schaltungen

Localization Systems (also known as Realtime Location Systems, or RTLS) be-
come more and more popular in industry sectors such as logistics, automation and
many more. These systems provide valuable information about whereabouts of objects
at runtime. Therefore, processes can be traced, analyzed and optimized. Besides the
research activities at the core of localization systems (like resilience and interference-
free location technologies or methods for highly accurate positioning), there emerge

13

algorithms and techniques to identify meaningful information for further processing
steps. We focus our research on automatic configuration methods for RTLSs as well as
on the generation of dynamic moving models and techniques for event processing on
position streams at runtime.

In 2011, we investigated whether events can be predicted after analyzing and learning
event streams from the localization system at runtime. As a result, we are able to deduce
models that represent the information buried in the event stream to predict future events.

In 2012 we developed several methods and techniques to process and detect events with
low latency. Events (composite, complex) can be detected by a hierarchical aggrega-
tion of sub-events. Those sub-events can be detected by using several event detectors
that only process a sub-information from the event stream. The complexity of the de-
tection components is strongly reduced. Hence, event detection components are fully
maintainable, and can use parallel or distributed cluster architectures more efficiently. It
is now possible to detect important events within a few milliseconds.

The project is a contribution of the Programming Systems Group to the IZ ESI:
http://www.esi.uni-erlangen.de/.

2.7 Software Project Control Center - Prototypical implementati-
on of a new tool for quality assurance during software develop-
ment

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dr.-Ing. Josef Adersberger
Norbert Tausch, M. Eng.
Duration: 1.11.2009–31.12.2013
Sponsored by:
Bundesministerium für Wirtschaft und Technologie
Contact:
Prof. Dr. Michael Philippsen
Phone: +49-9131-85-27625
Fax: +49-9131-85-28809
E-Mail: michael.philippsen@fau.de

Modern software systems are getting increasingly complex with respect to functional,
technical and organizational aspects. Thus, both the number of requirements per system

14

and the degree of their interconnectivity constantly increase. Furthermore the technical
parameters, e.g., for distribution and reliability are getting more complex and software
is developed by teams that are not only spread around the globe and also suffer from in-
creasing time pressure. Due to this, the functional, technical, and organizational control
of software development projects is getting more difficult.

The ”Software Project Control Center” is a tool that helps the project leader, the software
architect, the requirements engineer, or the head of development. Its purpose is to make
all aspects of the development process transparent and thus to allow for better project
control. To achieve transparence, the tool distills and gathers properties from all artifacts
and correlations between them. It presents/visualizes this information in a way suitable
for the individual needs of the users.

The Software Project Control Center unifies the access to relations between artifacts
(traceability) and to their properties (metrics) within software development projects.
Thus, their efficiency can be significantly increased. The artifacts, their relations, and
related metrics are gathered and integrated in a central data store. This data can be
analyzed and visualized, metrics can be computed, and rules can be checked.

For the Software Project Control Center project we cooperate with the QAware GmbH,
Munich. The AIF ZIM program of the German Federal Ministry of Economics and
Technology funded the first 30 months of the project.

The Software Project Control Center is divided into two subsystems: The integration
pipeline that gathers traceability data and metrics from a variety of software engineering
tools, and the analysis core, that allows to analyze the integrated data in a holistic way.
Each subsystem is developed in a separate subproject.

The project partner QAware GmbH implements the integration pipeline. The first step
was to define TraceML, a modeling language for traceability information in conjunction
with metrics. The language contains a meta-model and a model library. TraceML allows
to define customized traceability models in an efficient way. The integration pipeline is
realized using TraceML as lingua franca in all processing steps: From the extraction
of traceability information to its transformation and integrated representation. We used
the Eclipse Modeling Framework to define the TraceML models on each meta-model
level. Furthermore, we use the Modeling Workflow Engine for model transformations
and Eclipse CDO as our model repository. A set of wide-spread tools for software en-
gineering are connected to the integration pipeline including Subversion, Eclipse, Jira,
Enterprise Architect and Maven.

The main research contribution of our group to this project is the analysis core, i.e.,
the design and realization of a domain-specific language for graph-based traceability
analysis. Our Traceability Query Language (TracQL) significantly reduces the effort
that is necessary to implement traceability analyses. This is crucial for both industry

15

and the research community as lack of expressiveness and inefficient runtimes of other
known approaches hinder the implementation of traceability analysis. TracQL eases not
only the extraction, but also the analysis of traceability data using graph traversals that
are denoted in a concise functional programming style. The language itself is built on
top of Scala, a multi-paradigm programming language, and was successfully applied to
several real-world industrial projects.

2.8 Integrated Tool Chain for Meta-model-based Process Modeling
and Execution

Project manager:
Hon.-Prof. Dr.-Ing. Detlef Kips
Project participants:
Dipl.-Inf. Ralf Ellner
Prof. Dr. Michael Philippsen
Dr.-Ing. Martin Jung
Dipl.-Inf. Johannes Drexler
Dipl.-Inf. Samir Al-Hilank
Duration: 1.10.2008–31.12.2012
Sponsored by:
BMWi

As demands on the development of complex software systems are continuously
increasing, compliance with well-defined software development processes becomes
even more important. Especially large and globally distributed software development
projects tend to require long-running and dynamically changeable processes spanning
multiple organizations. In order to describe and support such processes, there is a strong
need for suitable process modeling languages and for powerful support by tools.

The results of a preceding cooperation project show that today’s tools markets lack
integrated tool chains which actually support the fine-grained and precise modeling of
software development processes as well as their computer-aided execution, controlling
and monitoring. A cooperation project has bridged this gap. This cooperation project
was carried out together with develop group as an industrial partner and was funded by
BMWi. It started in October 2008 and has been scheduled for three researchers. The
project was finished in September 2011.

The objective of this cooperation project was to prototype an integrated tool chain by
using a rigorous, meta-model based approach that supports modeling, enactment, and
execution of industrial software development processes. Bearing the applicability of
such a tool in mind, this approach was mainly intended to provide a wide adaptability of

16

process models to different industrial development scenarios, to define a user-friendly
concept of process description and to establish an extensive computer-aided process
execution support, contributing to the efficiency of development activities. These bene-
fits were achieved by a high grade of formalism, by an integrated, generic concept of
process modeling and process enactment and by using commonly accepted industrial
standards (UML, SPEM).

The integrated tool chain developed in this project is based on an extension of the SPEM
standard (eSPEM – enactable SPEM). eSPEM adds a behaviour modeling concept by
reusing UML activity and state machine diagrams. In addition, eSPEM provides beha-
viour modeling concepts that are specific to software development processes, for exam-
ple, dynamic task creation and scheduling.

In 2012, an overview of the tool chain and eSPEM has been presented at the ”First
Workshop on Academics Modeling with Eclipse” which was held in conjunction with
the ”8th European Conference on Modeling Foundations and Applications”. In addition,
practical experiences from modeling SDPs in industrial projects have shown a rising im-
portance of standards and reference models which are subsequently summarized under
the term quality standard. These quality standards are used to specify requirements for
target-oriented and effective execution of software development projects. These require-
ments are thereby defined to address different goals related to e.g. quality and efficiency
(Automotive SPICE, CMMI) or safety (ISO 26262 Road Vehicles – Functional Safety)
aspects of SWDPMs (Software Development Process Models). In other words, these
requirements – often described in terms of best practices – are imposed on the software
process definition that is typically described by SWDPMs. Tracing these requirements
to the process definition is a precondition for supporting efficient assessment activities
and process improvement projects. An additional goal of this research project lies there-
fore in the integration of these quality standards with SWDPMs with a special focus on
environments that requires conformance to more than one quality standard (e.g. CMMI,
Automotive SPICE and ISO 26262).

2.9 Embedded Systems Institute

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Stefan Kempf
Dipl.-Inf. Georg Dotzler
Dipl.-Inf. Thorsten Blaß
Dipl.-Inf. Tobias Werth
Dipl.-Inf. Christopher Mutschler

17

Andreas Kumlehn, M. Sc.
Dr.-Ing. Norbert Oster
Start: 1.9.2007

In September 2007 the ESI – Embedded System Institute – was founded as an
interdisciplinary center at the Friedrich-Alexander-University (FAU) with the goal
to coordinate and organize research, teaching, and further education in the field of
embedded systems.

ESI brings together existing skills within the university and interests, activities, and
goals of large and medium sized companies in the field of embedded systems.

Companies obtain access to latest research results and the opportunity to develop com-
mon projects, to establish ties, and to find co-operation partners. The ESI concentrates
the skills of the chairs of computer sciences and makes them usable for co-operation
projects. Hence, the latest research results can be transferred into products in a spee-
dy way. Finally, the ESI may serve as a platform for recruiting excellent students and
highly qualified young academics at an early stage.

The chair of computer science department 2 (Prof. Philippsen) is one of the active foun-
ders of the ESI and carries out research projects within the ESI.

More information can be found at http://www.esi.uni-erlangen.de and http://www.esi-
anwendungszentrum.de

2.10 Graphs and Graph Transformations

Project manager:
Prof. em. Dr. Hans Jürgen Schneider
Start: 1.10.2004
Contact:
Prof. em. Dr. Hans Jürgen Schneider
Phone: +49-9131-85-27620
Fax: +49-9131-85-28809
E-Mail: hans.juergen.schneider@fau.de

Graphs are often used as an intuitive aid for the clarification of complex matters.
Examples of outside computer science include, e.g., chemistry where molecules are
modeled in a graphical way. In computer science, data or control flow charts are often
used as well as entity relationship charts or Petri-nets to visualize software or hardware
architectures. Graph grammars and graph transformations combine ideas from the
fields of graph theory, algebra, logic, and category theory, to formally describe changes
in graphs.

18

Category theory is an attractive tool for the description of different structures in a uni-
form way, e.g., the different models for asynchronous processes: Petri-Nets are based
on standard labeled graphs, state charts use hierarchical graphs, parallel logic program-
ming can be interpreted in a graph-theoretical way using so-called jungles, and the actor
systems can be visualized as graphs, whose labeling alphabet is a set of term graphs.

In 2012, we have concentrated our attention on a theoretical aspect.

Our work on graph transformation is based on notions borrowed from category theo-
ry. The so-called double-pushout approach represents a production by two morphisms
starting at a common interface graph. One pushout glues the left-hand side of the pro-
duction into the context, the other does with the right-hand side. Effectively constructing
a derivation step, however, requires finding a pushout complement on the left-hand si-
de. Some people consider this disadvantageous. In 1984, Raoult has proposed to model
graph rewriting by a single pushout; Loewe has extensively studied this approach, but
the discussion was mainly restricted to injective morphisms. Under this assumption, the
approaches are equivalent. Some relevant applications such as term graph rewriting, ho-
wever, lead to non-injective morphisms. We have examined these cases in detail, and we
could show that the equivalence also holds for non-injective cases as long as the handle
satisfies some reasonable conditions.

2.11 International Collegiate Programming Contest at the FAU

Project manager:
Prof. Dr. Michael Philippsen
Project participants:
Dipl.-Inf. Tobias Werth
Dipl.-Inf. Daniel Brinkers
Dipl.-Math. Jakob Krainz
Start: 1.11.2002
Contact:
Dipl.-Inf. Tobias Werth
Phone: +49-9131-85-28865
Fax: +49-9131-85-28809
E-Mail: tobias.werth@fau.de

The Association for Computing Machinery (ACM) has been hosting the Interna-
tional Collegiate Programming Contest (ICPC) for many years. Teams of three students
try to solve nine to eleven programming problems within five hours. What makes this
task even harder, is that there is only one computer available per team. The problems
demand for solid knowledge of algorithms from all areas of computer science and

19

mathematics, e.g., graphs, combinatorics, strings, algebra, and geometry.

The ICPC consists of three rounds. First, each participating university hosts a local con-
test to find the three teams that are afterwards competing in one of the various regional
contests. Erlangen is situated within the bounds of the Northwestern European Regional
Contest (NWERC) where also teams from Great Britain, Benelux and Scandinavia com-
pete. The winners of all the world’s regional contests (and some second place holders)
advance to the world finals in spring of the following year.

In 2012 two local contests took place in Erlangen. During the winter semester we con-
ducted a team contest with teams consisting of at most three students. The main goal
of this contest was to arouse interest of new students in the contests. There has been
a record attendance of 25 FAU teams. Also 40 teams from universities from all over
Europe participated.

As in the previous years, in the summer term the seminar ”Hello World - Programming
for Advancers” served to prepare students from different disciplines in algorithms and
contest problems. As a result of the summer contest, which was organized as a national
German contest for the first time, we selected the representatives of the FAU that later
participated in the NWERC 2012 in Delft. 21 teams with students of Computer Science,
Computational Engineering, Mathematics as well as Information and Communication
Technology took part in the contest. Ten students were selected for the NWERC forming
three teams and one reserve. At the NWERC in Delft, our best team solved six problems
but missed a medal by just one place. The second team also did a great job solving five
problems. With a rank in the middle (38th of 83 teams) for the third team, the NWERC
was a great success for the FAU. Again, the training camp served as a perfect way of
extra preparation for the student competitors.

3 Publications 2012

– Braunstein, Sören ; Härdtlein, Jochen ; Philippsen, Michael: Expressing Paralle-
lism and Timing in Embedded Real-Time Applications . In: High-Performance
and Embedded Architecture and Compilation (HiPEAC) Network of Excellence
(Org.) : 8th International Summer School on Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (ACACES) 2012
- Poster Abstracts (8th International Summer School on Advanced Computer Ar-
chitecture and Compilation for High-Performance and Embedded Systems Fiug-
gi, Italy July 11, 2012). Ghent (Belgium) : Academia Press, 2012, pp 197-200. -
ISBN 978-90-382-1987-5

– Dotzler, Georg ; Veldema, Ronald ; Philippsen, Michael: Annotation Support for
Generic Patches . In: Maalej, Walid ; Robillard, Martin ; Walker, Robert J. ; Zim-

20

mermann, Thomas (Ed.) : Proceedings of the Third International Workshop on
Recommendation Systems for Software Engineering (RSSE 12) (International
Workshop on Recommendation Systems for Software Engineering Zurich, Swit-
zerland 04.06.2012). 2012, pp 6-10. - ISBN 978-1-4673-1758-0

– Ellner, Ralf ; Al-Hilank, Samir ; Jung, Martin ; Kips, Detlef ; Philippsen, Mi-
chael: An Integrated Tool Chain for Software Process Modeling and Execution.
In: Störrle, Harald ; Botterweck, Goetz ; Bourdellès, Michel ; Kolovos, Dimi-
tris; Paige, Richard ; Roubtsova, Ella ; Rubin, Julia ; Tolvanen, Juha-Pekka (Ed.):
Joint Proceedings of co-located Events at the 8th European Conference on Mo-
deling Foundations and Applications (ECMFA 2012) (8th European Conference
on Modeling Foundations and Applications (ECMFA 2012) Lyngby, Denmark
02.-05.07.2012). 2012, pp 73-82. - ISBN 978-87-643-1014-6

– Mutschler, Christopher ; Philippsen, Michael: Apparatus, Method and
Computer Program for Migrating an Event Detector Process . Schutz-
recht PCT/EP2011/069159 patent application (14.03.2012)

– Mutschler, Christopher ; Philippsen, Michael: Learning Event Detection Rules
with Noise Hidden Markov Models . In: Benkrid, Khaled ; Merodio, David
(Ed.): Proceedings of the 2012 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS-2012) (2012 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS-2012) Nuremberg, Germany 25.06.2012). 2012, pp 159-166.
- ISBN 978-1-4673-1914-0

– Mutschler, Christopher ; Philippsen, Michael: Towards a Distributed Self-
Optimizing Event Processing System for Realtime Locating Systems (RTLS).
In: ACM (Ed.) : DEBS PhD Workshops, 6th ACM International Conference
on Distributed Event-Based Systems (International Conference on Distributed
Event-Based Systems (DEBS) Berlin, Germany July 16-20, 2012). 2012, pp -.

– Mutschler, Christopher ; Loeffler, Christoffer: Vorrichtung, Verfahren und Com-
puterprogramm zum Verbessern einer Leistungsfähigkeit eines ereignisbasierten
verteilten Analysesystems . Schutzrecht DE 10 2012 112 253.9 patent application
(13.12.2012)

– Otto, Stephan ; Bretz, Ingmar ; Franke, Norbert ; von der Grün, Thomas ; Mutsch-
ler, Christopher: Vorrichtung, Verfahren und Computerprogramm zur Rekon-
struktion einer Bewegung eines Objekts . Schutzrecht 10 2012 111 304.1 DE
patent application (22.11.2012)

– Pankratius, Victor ; Philippsen, Michael (Ed.): Multicore Software Engineering,
Performance and Tools (Proceedings MSEPT 2012) . (International Conference

21

on Multicore Software Engineering, Performance, and Tools (MSEPT 2012)
Prague, Czech Republic 31.05. - 01.06.2012) Berlin Heidelberg : Springer, 2012
(Lecture Notes in Computer Science (LNCS) Vol. 7303) . - 95 pages. ISBN 978-
3-642-31201-4. ISSN 0302-9743

– Tausch, Norbert ; Philippsen, Michael ; Adersberger, Josef: TracQL: A Domain-
Specific Language for Traceability Analysis . In: Ali Babar, M. ; Cuesta, C. ;
Savolainen, J. ; Männistö, T. (Ed.) : Proceedings of the 2012 Joint Working Con-
ference on Software Architecture & 6th European Conference on Software Ar-
chitecture (Joint Working Conference on Software Architecture & 6th European
Conference on Software Architecture (WICSA/ECSA 2012) Helsinki, Finland 20.
- 24.08.2012). Los Alamitos, CA : IEEE CPS, 2012, pp 320-325. - ISBN 978-0-
7695-4827-2

– Veldema, Ronald ; Philippsen, Michael: Parallel Memory Defragmentation on a
GPU . In: Zhang, Lixin ; Mutlu, Onur (Ed.) : Proceedings of the 2012 ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness (ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness (MSPC
12) Beijing, China 16.06.2012). 2012, pp 38-47. - ISBN 978-1-4503-1219-6

4 Exam theses (german only)

– Studienarbeit: Realisierung der konkreten Syntax von ”DeepML” mit dem
Graphiti-Framework. Bearbeiter: Elena Klevtsova (beendet am 01.06.2012); Be-
treuer: Dipl.-Inf. Ralf Ellner; Hon.-Prof. Dr.-Ing. Detlef Kips

– Master Thesis: Blending Agile and Traditional Project Management for Sa-
fety Critical Systems Engineering. Bearbeiter: Tobias Freitag (beendet am
09.08.2012); Betreuer: Hon.-Prof. Dr.-Ing. Bernd Hindel

– Bachelor Thesis: Programmierung einer Mini-Anlage mit parallelen Program-
mierkonstrukten. Bearbeiter: Martin Sturm (beendet am 28.08.2012); Betreuer:
PD Dr. Ronald Veldema; Dipl.-Inf. Stefan Kempf; Prof. Dr. Michael Philippsen

– Bachelor Thesis: Anpassung eines Expertensystems zur Programmanalyse und -
refaktorisierung für Anwendungen aus der Automatisierungstechnik. Bearbeiter:
Johannes Wellhöfer (beendet am 03.09.2012); Betreuer: Dipl.-Inf. Georg Dotzler;
Dipl.-Inf. Stefan Kempf; Prof. Dr. Michael Philippsen

– Bachelor Thesis: Evaluation von Algorithmen zur Positionsdatenkompression.
Bearbeiter: Jonathan Reuss (beendet am 2.10.2012); Betreuer: Dipl.-Inf. Chri-
stopher Mutschler; Prof. Dr. Michael Philippsen

22

– Bachelor Thesis: Implementierung eines JaMP-Übersetzers zur Generierung von
Java/OpenCL Code. Bearbeiter: Florian Habur (beendet am 02.10.2012); Betreu-
er: Dipl.-Inf. Georg Dotzler; Prof. Dr. Michael Philippsen

– Bachelor Thesis: Netzwerksimulation- und -optimierung von verteilten Ereignis-
verarbeitungssystemen. Bearbeiter: Löffler Christoffer (beendet am 05.11.2012);
Betreuer: Dipl.-Inf. Christopher Mutschler; Prof. Dr. Michael Philippsen

– Bachelor Thesis: Entwicklung eines Werkzeugs zur Extraktion von Mustern aus
Software-Archiven zur Quellcode-Optimierung. Bearbeiter: Marius Kamp (been-
det am 06.11.2012); Betreuer: Dipl.-Inf. Georg Dotzler; Prof. Dr. Michael Phil-
ippsen

– Diplomarbeit: Konzeption und prototypische Realisierung einer Abfrage- und
Transformationssprache für DeepML. Bearbeiter: Elena Klevtsova (beendet am
09.11.2012); Betreuer: Dipl.-Inf. Samir Al-Hilank; Dipl.-Inf. Ralf Ellner; Prof.
Dr. Michael Philippsen

– Bachelor Thesis: Intelligent Documentation Generation. Bearbeiter: Teodor Sha-
terov (beendet am 27.11.2012); Betreuer: PD Dr. Ronald Veldema; Prof. Dr. Mi-
chael Philippsen

– Master Thesis: Transparent use of Java objects on the GPU in the JaMP/OpenMP
framework. Bearbeiter: Carolin Wolf (beendet am 06.12.2012); Betreuer: Dipl.-
Inf. Georg Dotzler; Prof. Dr. Michael Philippsen

23

	Focus of research
	Research projects
	ErLaDeF - Embedded Realtime Language Development Framework
	InThreaT - Inter-Thread Testing
	OpenMP/Java
	PATESIA - Parallelization techniques for embedded systems in automation
	Compiler-supported parallelization for multi-core architectures
	Efficient Software Architectures for Distributed Event Processing Systems
	Software Project Control Center - Prototypical implementation of a new tool for quality assurance during software development
	Integrated Tool Chain for Meta-model-based Process Modeling and Execution
	Embedded Systems Institute
	Graphs and Graph Transformations
	International Collegiate Programming Contest at the FAU

	Publications 2012
	Exam theses (german only)

